Coupling Continuum and Density Functional Theories for Materials Modeling
用于材料建模的耦合连续体和密度泛函理论
基本信息
- 批准号:1419030
- 负责人:
- 金额:$ 12.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns improved methods for the modeling of material systems. Many materials modeling problems rely heavily on quantum mechanical models. However, for quantum mechanics to be really useful, one has to couple it with either continuum models or molecular mechanics models. The success of such an approach has been well documented in chemistry applications. This project explores approaches based on quantum mechanics (density functional theory) coupled with molecular mechanics or continuum mechanics in modeling materials. Although the coupled quantum mechanics/molecular mechanics approach has enjoyed a considerable amount of success, winning the 2013 Nobel Prize in chemistry, its application to general material systems, particularly metallic systems, has been at issue for a long time. The problem comes from the non-local effect of the errors made at the interface between the molecular mechanics and quantum mechanics regions. This problem is particularly severe for metallic systems. This project tackles these important challenges in the modeling of material systems.There are many technical hurdles that one needs to overcome. First of all, one needs to improve the efficiency of density functional theory (DFT) algorithms to be able to handle inhomogeneous systems, such as systems with point defects or a small portion of extended defects. The next hurdle is to derive classical models, based on either molecular mechanics or continuum theory, that are consistent with DFT. This means that the DFT models reduce to classical models in some limit. A third problem is to design coupling schemes that move smoothly from DFT to classical models. The current project will focus on the second and third problems, beginning with one-dimensional model problems. The investigation's starting point is the Fermi operator formulation of DFT. By making successive approximations on the Fermi operator formalism, the PI aim to arrive at a consistent DFT/molecular mechanics or DFT/continuum model coupling scheme.
本研究涉及材料系统建模的改进方法。 许多材料建模问题严重依赖于量子力学模型。然而,要使量子力学真正有用,必须将其与连续介质模型或分子力学模型相结合。这种方法的成功已经在化学应用中得到了很好的证明。 本项目探索基于量子力学(密度泛函理论)与分子力学或连续介质力学相结合的方法来建模材料。 虽然耦合量子力学/分子力学方法已经取得了相当大的成功,赢得了2013年诺贝尔化学奖,但它在一般材料系统,特别是金属系统中的应用一直存在争议。这个问题来自于在分子力学和量子力学区域之间的界面处产生的误差的非局部效应。这个问题对于金属系统尤其严重。这个项目解决了材料系统建模中的这些重要挑战。有许多技术障碍需要克服。首先,需要提高密度泛函理论(DFT)算法的效率,以便能够处理非均匀系统,例如具有点缺陷或小部分扩展缺陷的系统。下一个障碍是基于分子力学或连续介质理论推导出与DFT一致的经典模型。这意味着DFT模型在一定限度内退化为经典模型。第三个问题是设计耦合方案,从DFT平滑地转移到经典模型。目前的项目将集中在第二和第三个问题,从一维模型问题开始。调查的出发点是费米算子制定DFT。通过对费米算符形式进行逐次逼近,PI的目标是得到一个一致的DFT/分子力学或DFT/连续模型耦合方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weinan E其他文献
A deep potential model with long-range electrostatic interactions
具有长程静电相互作用的深电位模型
- DOI:
10.1063/5.0083669 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Linfeng Zhang;Han Wang;Maria Carolina Muniz;Athanassios Z. Panagiotopoulos;Roberto Car;Weinan E - 通讯作者:
Weinan E
Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation
速度-脉冲密度公式中不可压缩流动的有限差分格式
- DOI:
10.1006/jcph.1996.5537 - 发表时间:
1997 - 期刊:
- 影响因子:4.1
- 作者:
Weinan E;Jian‐Guo Liu - 通讯作者:
Jian‐Guo Liu
Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics
使用自适应增强动力学对高维自由能景观进行有效采样
- DOI:
10.1038/s43588-021-00173-1 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Dongdong Wang;Yanze Wang;Junhan Chang;Linfeng Zhang;Han Wang;Weinan E - 通讯作者:
Weinan E
Optimization of Random Feature Method in the High-Precision Regime
高精度范围内随机特征方法的优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jingrun Chen;Weinan E;Yifei Sun - 通讯作者:
Yifei Sun
A Proposal on Machine Learning via Dynamical Systems
- DOI:
10.1007/s40304-017-0103-z - 发表时间:
2017-03 - 期刊:
- 影响因子:0.9
- 作者:
Weinan E - 通讯作者:
Weinan E
Weinan E的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weinan E', 18)}}的其他基金
FRG: Collaborative Research: Dynamical Processes in Many-Body Systems: Analysis and Simulations
FRG:协作研究:多体系统中的动态过程:分析和仿真
- 批准号:
1065894 - 财政年份:2011
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Efficient Algorithms for Electronic Structure Analysis
电子结构分析的高效算法
- 批准号:
0914336 - 财政年份:2009
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
- 批准号:
0708026 - 财政年份:2007
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0421608 - 财政年份:2004
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
- 批准号:
0407866 - 财政年份:2004
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Workshop on Quasiconvexity and its Applications
拟凸性及其应用研讨会
- 批准号:
0223926 - 财政年份:2002
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Collaborative Research: Focused Research Group: Analysis and Simulation of Magnetic Devices
合作研究:重点研究组:磁性器件的分析与仿真
- 批准号:
0130107 - 财政年份:2001
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
- 批准号:
0196162 - 财政年份:1999
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
- 批准号:
9629133 - 财政年份:1997
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical and Numerical Problems in Material Sciences and Fluid Mechanics
数学科学:材料科学和流体力学中的数学和数值问题
- 批准号:
9623137 - 财政年份:1996
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
相似海外基金
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
- 批准号:
NE/Z000106/1 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Research Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: Translation Potential of a Minimally Invasive Continuum Surgical Robot for the Eye/Ear
I-Corps:眼/耳微创连续手术机器人的翻译潜力
- 批准号:
2420989 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Enabling a Novel Evaluation Continuum for Connected & Autonomous Vehicles
实现互联的新颖评估连续体
- 批准号:
MR/Y003969/1 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Fellowship
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
- 批准号:
NE/Z000173/1 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Research Grant
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
- 批准号:
23K26155 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
- 批准号:
2339202 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
A general continuum theory of polycrystalline materials
多晶材料的一般连续介质理论
- 批准号:
EP/X037800/1 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Research Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
- 批准号:
10087666 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
EU-Funded
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
- 批准号:
477940 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Salary Programs