Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration

合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法

基本信息

  • 批准号:
    1419553
  • 负责人:
  • 金额:
    $ 28.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-12-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

New bioinformatic and statistical methods will be developed to study traumatic central nervous system including spinal cord, which provokes an inflammatory response that generates substantial secondary tissue damage and inhibits neuronal regeneration. Anti-inflammatory treatment of human spinal core injury and itstiming must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and the nature of their actions. However, inflammatory cascades and relationship with neurogenesis are complicated and consequence of central nervous system injury including spinal cord injury is poorly understood. Invading macrophages and resident microglia cells, the two major cell types that are from monocytic lineage play major role in the inflammatory process. Due to the lack of specific markers, the functional roles of invading macrophages from activated microglia within injuredspinal cord are not largely unknown. We propose to use microarray techniques to investigate expression profiles on microglia and macrophages in different time points and the expression network between inflammation and neurogenesis. New methods are proposed to label defined cell populations in microglia/macrophage deleted mice. New statistical techniques will be developed to address directly thechallenges from our biological studies. These include removing intensity effect of the Affymetrix data, identifying significant genes and determining gene expressions patterns over time, identifying a small group of genes that differentiate invading macrophages from activated microglia in the spinal cord, among others. They involve the statistical estimation, testing, variable selection, classification and network modeling in high-dimensional feature spaces. These emerging problems will be confronted via developing new statistical methods to address the challenges associated with high-dimensionality. At the same time, the investigators also intend to provide fundamental understanding, via asymptotic analysis and simulation studies, to these problems and their associated methodologies. A distinguished feature of the proposal is the combination the strengths of our expertise in statistics and molecular biology to gain better understanding of moleculardisturbances in spinal cord and central nervous system injury.The proposal investigates molecular disturbances in spinal cord and central nervous system injury. Our aims include identifying genes that reveal the distinct functional profiles of resident microglia and invading macrophages in spinal cord injury, and selecting the genes that are uniquely altered during specific facets of the neuronal response to inflammation. These approaches can not only help us understand the molecular mechanisms of inflammatory responses in spinal cord injury, but also potentially identify genes to be targeted for therapeutic intervention following spinal core injury. In addition, our developed cutting-edging statistical techniques and bioinformatic tools can be applied to other biological and statistical researches. The project will also integrate research and education by working closely with students and funding them in the form of research assistantships, creating datasets, and developing publicly available computer code (both made available through the web) for each of the main research endeavors funded by this proposal. Various research findings and examples will be simplified and taught in both undergraduate and graduate courses.In particular, they will be used in supervising undergraduate senior theses and Ph.D. theses. Postdoctoral fellows and underrepresented groups will be trained as a part of our research investigation. The results will be disseminated broadly through presentations at seminars, conferences, professional association meetings, and internet.
将开发新的生物信息学和统计学方法来研究创伤性中枢神经系统,包括脊髓,其引起炎症反应,产生大量的继发性组织损伤并抑制神经元再生。人类脊髓损伤的抗炎治疗和刺激必须基于参与炎症反应的细胞类型、损伤后它们出现的时间和它们的作用性质的知识。然而,炎症级联反应及其与神经发生的关系是复杂的,中枢神经系统损伤包括脊髓损伤的后果知之甚少。侵袭性巨噬细胞和驻留的小胶质细胞,这两种来自单核细胞谱系的主要细胞类型在炎症过程中起主要作用。由于缺乏特异性标记物,损伤脊髓内活化的小胶质细胞侵入巨噬细胞的功能作用在很大程度上不是未知的。我们建议使用微阵列技术来研究不同时间点的小胶质细胞和巨噬细胞的表达谱以及炎症和神经发生之间的表达网络。提出了标记小胶质细胞/巨噬细胞缺失小鼠中确定的细胞群的新方法。新的统计技术将被开发出来,以直接应对来自我们生物学研究的挑战。这些方法包括去除Affyssin数据的强度效应,识别重要基因并确定随时间推移的基因表达模式,识别一小组将入侵的巨噬细胞与脊髓中活化的小胶质细胞区分开来的基因等。 它们涉及高维特征空间中的统计估计、检验、变量选择、分类和网络建模。 这些新出现的问题将通过开发新的统计方法来解决与高维相关的挑战。同时,研究人员还打算通过渐近分析和模拟研究,对这些问题及其相关方法提供基本的理解。 该提案的一个突出特点是结合了我们在统计学和分子生物学方面的专长,以更好地了解脊髓和中枢神经系统损伤中的分子紊乱。该提案研究脊髓和中枢神经系统损伤中的分子紊乱。我们的目标包括鉴定揭示脊髓损伤中常驻小胶质细胞和入侵巨噬细胞的不同功能特征的基因,并选择在神经元对炎症反应的特定方面发生独特改变的基因。这些方法不仅可以帮助我们了解脊髓损伤中炎症反应的分子机制,而且还可能识别脊髓核心损伤后治疗干预的靶基因。此外,我们开发的尖端统计技术和生物信息学工具可以应用于其他生物和统计研究。该项目还将通过与学生密切合作,并以研究助学金的形式资助他们,为该提案资助的每一项主要研究工作创建数据集并开发公开可用的计算机代码(两者都可以通过网络获得),从而整合研究和教育。将各种研究成果和实例进行简化,并在本科和研究生课程中教授。特别是,它们将用于指导本科毕业论文和博士学位。论文博士后研究员和代表性不足的群体将接受培训,作为我们研究调查的一部分。研究结果将通过在研讨会、会议、专业协会会议和互联网上的介绍广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Ren其他文献

Endosialin is expressed in high grade and advanced sarcomas: evidence from clinical specimens and preclinical modeling.
内皮唾液酸蛋白在高级和晚期肉瘤中表达:来自临床标本和临床前模型的证据。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    C. Rouleau;Robert Smale;Y. Fu;Guodong Hui;Fei Wang;E. Hutto;Robert Fogle;Craig Jones;Roy D. Krumbholz;Stephanie Roth;M. Curiel;Yi Ren;R. Bagley;Gina Wallar;G. Miller;S. Schmid;B. Horten;B. Teicher
  • 通讯作者:
    B. Teicher
Reconfigurable Spoof plasmonic Coupler for Dynamic Switching between Forward and Backward Propagations
用于前向和反向传播之间动态切换的可重构欺骗等离子体耦合器
  • DOI:
    10.1002/admt.202200129
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Xinyu Liu;Yi Lei;Xin Zheng;Yi Ren;Xinxin Gao;Jingjing Zhang;Tie Jun Cui
  • 通讯作者:
    Tie Jun Cui
Theoretical study of the gas-phase ion pairs SN2 reactions of LiX with CH3SY (X, Y = F, Cl, Br, I)
LiX与CH3SY (X, Y = F, Cl, Br, I)气相离子对SN2反应的理论研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Gai;Yi Ren
  • 通讯作者:
    Yi Ren
Efficient Electromagnetic Modeling of Multidomain Planar Layered Medium by Surface Integral Equation
利用表面积分方程对多域平面层状介质进行高效电磁建模
Pyridine-incorporated cyclo[6]aramide for recognition of urea and its derivatives with two different binding modes
吡啶掺入的环[6]芳酰胺用于识别具有两种不同结合模式的尿素及其衍生物
  • DOI:
    10.1080/10610278.2017.1282614
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kang Kang;Wei Huang;Yonghong Fu;Lixi Chen;Jinchuan Hu;Yi Ren;Wen Feng;Lihua Yuan
  • 通讯作者:
    Lihua Yuan

Yi Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi Ren', 18)}}的其他基金

SaTC: CORE: Small: Decentralized Attribution and Secure Training of Generative Models
SaTC:核心:小型:生成模型的去中心化归因和安全训练
  • 批准号:
    2101052
  • 财政年份:
    2021
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
  • 批准号:
    2054014
  • 财政年份:
    2021
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1661727
  • 财政年份:
    2017
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
EAGER: Reconstruction and Optimal Design of Multi-scale Material Systems through Deep Networks
EAGER:通过深度网络进行多尺度材料系统的重构和优化设计
  • 批准号:
    1651147
  • 财政年份:
    2016
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    0714589
  • 财政年份:
    2007
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了