SaTC: CORE: Small: Decentralized Attribution and Secure Training of Generative Models

SaTC:核心:小型:生成模型的去中心化归因和安全训练

基本信息

  • 批准号:
    2101052
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Generative models describe real-world data distributions such as images, texts, and human motions, and are playing an essential role in a large and growing range of applications from photo editing to natural language processing to autonomous driving. There are two open challenges regarding the development and dissemination of generative models: (1) Adversarial applications of generative models have created concerning socio-technical disturbances (e.g., espionage operations and malicious impersonation); and (2) developing generative models using multiple proprietary datasets (which are needed to reduce data biases) raises privacy concerns about data leakage. Legislative efforts have recently been taken in the wake of these challenges, so far with limited consensus on the format of regulations and knowledge about their technological or social feasibility. To this end, this project will develop new mathematical theories and computational tools to assess the feasibility of two connected solutions to these challenges: Model attribution enforces the owners to be correctly identified based on their generated contents; secure training ensures zero data leakage during the collaborative training of attributable generative models. If successful, the outcomes of the project will provide technical guidance for future regulation design towards secure development and dissemination of generative models. Project results will be disseminated through a project website, open-source software, and public datasets. The impacts of the project will be broadened through educational activities, including new course modules on Artificial Intelligence (AI) security, undergraduate research projects, and outreach to the local community through lab tours, to prepare underrepresented groups with skills to mitigate risks from malicious impersonation and biased data/model representations targeting these groups.This project will focus on synergistic research tasks towards decentralized model attribution and secure training of generative models. In the former, the research team will study the systematic design of a set of user-end generative models that can be certifiably attributed by a set of binary classifiers, which are stored in a decentralized manner to mitigate security risks. The technical feasibility of decentralized attribution will be measured by the tradeoffs between attributability, generation quality, and model capacity. In the latter, the research team will study secure multi-party training of generative models and the associated binary classifiers for attribution. Data privacy and training scalability will be balanced through the design of security-friendly model architectures and learning losses. New knowledge will be created that differentiates this project from the existing state-of-the-art literature in digital forensics and secure computation: (1) Sufficient conditions for decentralized attribution will be developed, which will reveal analytical connections between attributability, data geometry, model architecture, and generation quality. (2) The sufficient conditions will enable estimation of the capacity of attributable models for a given dataset and generation quality tolerance. (3) Feasibility of sublinear secure vector multiplication will be studied, which will fundamentally improve the scalability of secure collaborative training. (4) Privacy-friendly activation and loss functions will be designed for the training of user-end generative models and the classifiers for attribution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成模型描述真实世界的数据分布,如图像、文本和人体运动,并且在从照片编辑到自然语言处理再到自动驾驶的大量且不断增长的应用中发挥着重要作用。关于生成模型的开发和传播存在两个公开的挑战:(1)生成模型的对抗性应用已经造成了关于社会技术的干扰(例如,间谍活动和恶意冒充);以及(2)使用多个专有数据集(减少数据偏差所需)开发生成模型会引发对数据泄露的隐私担忧。在这些挑战之后,最近采取了立法努力,迄今为止,对条例的格式以及对其技术或社会可行性的了解有限。为此,该项目将开发新的数学理论和计算工具,以评估这些挑战的两种相关解决方案的可行性:模型归属强制所有者根据其生成的内容被正确识别;安全训练确保在可归属生成模型的协作训练期间零数据泄漏。如果成功,该项目的成果将为未来的监管设计提供技术指导,以确保生成模型的安全开发和传播。项目成果将通过项目网站、开放源码软件和公共数据集传播。该项目的影响将通过教育活动扩大,包括人工智能(AI)安全的新课程模块,本科生研究项目,以及通过实验室图尔斯之旅与当地社区的联系,为代表性不足的群体提供技能,以减轻恶意冒充和有偏见的数据带来的风险;针对这些群体的模型表示。该项目将专注于协同研究任务,以实现分散的模型属性和生成模型的安全训练。在前者中,研究团队将研究一组用户端生成模型的系统设计,这些模型可以通过一组二进制分类器进行可证明的属性,这些分类器以分散的方式存储,以减轻安全风险。去中心化归因的技术可行性将通过归因性、生成质量和模型容量之间的权衡来衡量。在后者中,研究小组将研究生成模型的安全多方训练和相关的二进制分类器。数据隐私和训练可扩展性将通过设计安全友好的模型架构和学习损失来平衡。将创建新的知识,将该项目与现有的数字取证和安全计算方面的最先进文献区分开来:(1)将开发分散归因的充分条件,这将揭示可归因性,数据几何,模型架构和生成质量之间的分析联系。(2)该充分条件将使得能够估计给定数据集的可归因模型的容量和生成质量容差。(3)研究次线性安全向量乘法的可行性,从根本上提高安全协同训练的可扩展性。(4)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decentralized Attribution of Generative Models
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changhoon Kim;Yi Ren;Yezhou Yang
  • 通讯作者:
    Changhoon Kim;Yi Ren;Yezhou Yang
Attributing Image Generative Models using Latent Fingerprints
  • DOI:
    10.48550/arxiv.2304.09752
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangyu Nie;C. Kim;Yezhou Yang;Yi Ren
  • 通讯作者:
    Guangyu Nie;C. Kim;Yezhou Yang;Yi Ren
Attributable Watermarking of Speech Generative Models
语音生成模型的归属水印
Compact and Malicious Private Set Intersection for Small Sets
Private Join and Compute from PIR with Default
  • DOI:
    10.1007/978-3-030-92075-3_21
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tancrède Lepoint;Sarvar Patel;Mariana Raykova;Karn Seth;Ni Trieu
  • 通讯作者:
    Tancrède Lepoint;Sarvar Patel;Mariana Raykova;Karn Seth;Ni Trieu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Ren其他文献

Endosialin is expressed in high grade and advanced sarcomas: evidence from clinical specimens and preclinical modeling.
内皮唾液酸蛋白在高级和晚期肉瘤中表达:来自临床标本和临床前模型的证据。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    C. Rouleau;Robert Smale;Y. Fu;Guodong Hui;Fei Wang;E. Hutto;Robert Fogle;Craig Jones;Roy D. Krumbholz;Stephanie Roth;M. Curiel;Yi Ren;R. Bagley;Gina Wallar;G. Miller;S. Schmid;B. Horten;B. Teicher
  • 通讯作者:
    B. Teicher
Reconfigurable Spoof plasmonic Coupler for Dynamic Switching between Forward and Backward Propagations
用于前向和反向传播之间动态切换的可重构欺骗等离子体耦合器
  • DOI:
    10.1002/admt.202200129
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Xinyu Liu;Yi Lei;Xin Zheng;Yi Ren;Xinxin Gao;Jingjing Zhang;Tie Jun Cui
  • 通讯作者:
    Tie Jun Cui
Theoretical study of the gas-phase ion pairs SN2 reactions of LiX with CH3SY (X, Y = F, Cl, Br, I)
LiX与CH3SY (X, Y = F, Cl, Br, I)气相离子对SN2反应的理论研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Gai;Yi Ren
  • 通讯作者:
    Yi Ren
Efficient Electromagnetic Modeling of Multidomain Planar Layered Medium by Surface Integral Equation
利用表面积分方程对多域平面层状介质进行高效电磁建模
Pyridine-incorporated cyclo[6]aramide for recognition of urea and its derivatives with two different binding modes
吡啶掺入的环[6]芳酰胺用于识别具有两种不同结合模式的尿素及其衍生物
  • DOI:
    10.1080/10610278.2017.1282614
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kang Kang;Wei Huang;Yonghong Fu;Lixi Chen;Jinchuan Hu;Yi Ren;Wen Feng;Lihua Yuan
  • 通讯作者:
    Lihua Yuan

Yi Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi Ren', 18)}}的其他基金

DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
  • 批准号:
    2054014
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1661727
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Reconstruction and Optimal Design of Multi-scale Material Systems through Deep Networks
EAGER:通过深度网络进行多尺度材料系统的重构和优化设计
  • 批准号:
    1651147
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    1419553
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    0714589
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
  • 批准号:
    2310470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
  • 批准号:
    2321649
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了