DMREF/Collaborative Research: Design of Multifunctional Catalytic Interfaces from First Principles
DMREF/合作研究:从第一原理设计多功能催化界面
基本信息
- 批准号:1437219
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Title: DMREF: Collaborative Research:Design of next-generation catalysts through predictive modeling and atomic-scale experimentsCatalysts are the materials that allow the production of critical substances that make modern life possible. Catalytic technologies make essential contributions to many sectors of the US economy, ranging from petrochemicals processing to pollution abatement in automobiles, and many products that are taken for granted in contemporary society would not exist without these crucial processes. Traditional strategies for the discovery of new heterogeneous catalysts have relied heavily on chemical intuition and experience accumulated over many years of industrial practice, but to develop the next generation of catalytic materials, these strategies will be inadequate. The collaborative team of Profs. Jeffrey Greeley, Volkan Ortalan, and Fabio Ribeiro of Purdue University, and Chao Wang of Johns Hopkins University, have been awarded a grant under the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) initiative to develop a new strategy. The team proposes to make accurate predictions from a combination of experiments with atomic-level resolution and modeling using large-scale computing. Such predictive techniques have been explored for simple classes of catalytic materials, such as highly ordered metal or oxide surfaces. However, a much broader space of potentially exciting catalysts can be accessed by exploring so-called "multifunctional" materials, which offer complex interfaces between metals and oxides. The researchers will combine unparalleled atomic-scale experimental characterization, synthesis, and reactivity measurements to both inform the computational models and test predicted catalysts to emerge from the computational analysis. The proposed program will both lay the fundamental groundwork for accelerated identification of breakthrough catalytic materials, in general, and identify practical new catalysts for reactions with CO, CO2, and H2 as feedstocks, in particular.Single component heterogeneous catalysts are constrained by inherent limitations in catalytic rates, as exemplified by the well-known maxima in volcano plots that have been observed for many catalytic chemistries. The limitations can, in turn, be traced to an extensive series of fundamental correlations that exist between the energetics of elementary steps and species on the sites in question. Multifunctional catalytic structures, such as the interfaces that exist between thin oxide films and metal nanoparticles, provide a potential means of overcoming these limitations and identifying entirely new classes of catalysts. Developing a unified design framework for such multifunctional structures will require a combination of first principles molecular modeling techniques, advanced methods to synthesize and characterize the structure of catalysts at the atomic scale, and highly accurate measurements of reaction rates on the resulting materials. The project team will focus on model reactions, relevant to hydrogen production and methanol synthesis, which can be promoted at multifunctional interfaces. The team will develop new molecular modeling strategies, relying primarily on ab-initio methods, to rapidly evaluate the catalytic properties of many combinations of metal/oxide interfaces for the reactions of interest. Promising candidates to emerge from these computational screening studies will then be synthesized using techniques that permit control of the catalyst structure at the atomic level. The catalytic and structural properties of these catalysts will be verified experimentally at atomic resolution, and the resulting information will be used to improve the predictive models and to further refine the candidate materials. The end goal is a method of broad applicability that can be used to design breakthrough multifunctional catalytic materials for a variety of reactions of scientific and economic importance.
摘要标题:DMREF:合作研究:通过预测建模和原子级实验设计下一代催化剂催化剂是生产使现代生活成为可能的关键物质的材料。 催化技术为美国经济的许多部门做出了重要贡献,从石油化工加工到汽车污染减排,如果没有这些关键工艺,许多在当代社会中被视为理所当然的产品就不会存在。 发现新型多相催化剂的传统策略严重依赖于化学直觉和多年工业实践积累的经验,但要开发下一代催化材料,这些策略将是不够的。教授的合作团队。普渡大学的Jeffrey格里利、Volkan Ortalan和Fabio Ribeiro以及约翰霍普金斯大学的Chao Wang获得了美国国家科学基金会设计材料以革命和工程我们的未来(DMREF)计划的资助,以开发一种新的战略。该团队建议通过结合原子级分辨率的实验和使用大规模计算的建模来做出准确的预测。 这种预测技术已经被探索用于简单类别的催化材料,例如高度有序的金属或氧化物表面。 然而,通过探索所谓的“多功能”材料,可以获得更广阔的潜在令人兴奋的催化剂空间,这些材料在金属和氧化物之间提供复杂的界面。研究人员将结合联合收割机无与伦比的原子级实验表征,合成和反应性测量,以通知计算模型和测试预测的催化剂从计算分析中出现。拟议的计划将奠定基础,加速识别突破性催化材料,在一般情况下,并确定实用的新催化剂与CO,CO2和H2作为原料的反应,特别是。单组分非均相催化剂的催化速率的固有局限性的约束,作为例证,众所周知的最大火山图,已观察到许多催化化学。 反过来,这些局限性可以追溯到一系列广泛的基本相关性,这些相关性存在于基本步骤的能量学和所讨论的地点上的物种之间。 多功能催化结构,如薄氧化物膜和金属纳米颗粒之间存在的界面,提供了克服这些限制和识别全新类型的催化剂的潜在手段。 为这种多功能结构开发统一的设计框架将需要结合第一原理分子建模技术,在原子尺度上合成和表征催化剂结构的先进方法,以及对所得材料反应速率的高度精确测量。 该项目小组将侧重于与制氢和甲醇合成有关的模型反应,这些反应可以在多功能界面上得到促进。 该团队将开发新的分子建模策略,主要依靠从头算方法,以快速评估金属/氧化物界面的许多组合对感兴趣反应的催化性能。 从这些计算筛选研究中出现的有希望的候选物将使用允许在原子水平上控制催化剂结构的技术来合成。 这些催化剂的催化和结构特性将在原子分辨率下进行实验验证,所得信息将用于改进预测模型并进一步改进候选材料。 最终目标是一种具有广泛适用性的方法,可用于为具有科学和经济重要性的各种反应设计突破性的多功能催化材料。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Catalytic Dephosphorylation Using Ceria Nanocrystals
- DOI:10.1021/acscatal.6b03472
- 发表时间:2017-03-01
- 期刊:
- 影响因子:12.9
- 作者:Manto, Michael J.;Xie, Pengfei;Wang, Chao
- 通讯作者:Wang, Chao
Recovery of Inorganic Phosphorus Using Copper-Substituted ZSM-5
- DOI:10.1021/acssuschemeng.7b01127
- 发表时间:2017-06
- 期刊:
- 影响因子:8.4
- 作者:Michael J. Manto;Pengfei Xie;Michael A. Keller;Wilhelm E. Liano;Tiancheng Pu;Chao Wang
- 通讯作者:Michael J. Manto;Pengfei Xie;Michael A. Keller;Wilhelm E. Liano;Tiancheng Pu;Chao Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Wang其他文献
Ground Behaviors Analysis of a Stope Covered by the Thin Bedrock and Large-Thick Alluvium: A Case Study
薄基岩和大厚冲积层覆盖采场的地层行为分析:案例研究
- DOI:
10.1155/2022/4759416 - 发表时间:
2022-02 - 期刊:
- 影响因子:1.6
- 作者:
Xiaoping Li;Guangchao Zhang;Guangzhe Tao;Chao Wang;Huaixuan Cao;Xipo Zhao;Xianyang Yan;Shibao Shen;Guanglei Zhou - 通讯作者:
Guanglei Zhou
QCD calculations of radiative heavy meson decays with subleading power corrections
辐射重介子衰变的 QCD 计算与次超导功率修正
- DOI:
10.1007/jhep04(2020)023 - 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Hua-Dong Li;Cai-Dian Lu ̈;Chao Wang;Yu-Ming Wang;Yan-Bing Wei - 通讯作者:
Yan-Bing Wei
Hardware Accelerator Design of Non-linear Optimization Correlative Scan Matching Algorithm in 2D LiDAR SLAM for Mobile Robots
移动机器人2D LiDAR SLAM中非线性优化相关扫描匹配算法的硬件加速器设计
- DOI:
10.1109/primeasia56064.2022.10103802 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qianjin Wang;Ao Hu;Dongxiao Han;Yu Yu;Guoyi Yu;Yuwen Li;Chao Wang - 通讯作者:
Chao Wang
Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties
面外二聚 MnIII 四齿席夫碱配合物:合成、结构和磁性
- DOI:
10.1016/j.ica.2009.03.048 - 发表时间:
2009-08 - 期刊:
- 影响因子:0
- 作者:
Ya-Fan Zhao;Chao Wang;Qing-Lun Wang;Yu-Hua Feng;Daizheng Liao;Jun Li;Shi-Ping Yan - 通讯作者:
Shi-Ping Yan
A novel earthworm-inspired smart lubrication material with self-healing function
具有自愈功能的新型蚯蚓智能润滑材料
- DOI:
10.1016/j.triboint.2021.107303 - 发表时间:
2021-10 - 期刊:
- 影响因子:6.2
- 作者:
Hongwei Ruan;Yaoming Zhang;Qihua Wang;Chao Wang;Tingmei Wang - 通讯作者:
Tingmei Wang
Chao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Wang', 18)}}的其他基金
Collaborative Research: FW-HTF-R: Wearable Safety Sensing and Assistive Robot-Worker Collaboration for an Augmented Workforce in Construction
合作研究:FW-HTF-R:可穿戴安全传感和辅助机器人工人协作,增强建筑劳动力
- 批准号:
2222881 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: A Principled Approach to Modeling and Analysis of Hardware Fault Attacks on Embedded Software
合作研究:FMitF:第一轨:嵌入式软件硬件故障攻击建模和分析的原则方法
- 批准号:
2220345 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
NSF-BSF: Synchronous electro-optical DNA detection using low-noise dielectric nanopores on sapphire
NSF-BSF:使用蓝宝石上的低噪声介电纳米孔进行同步电光 DNA 检测
- 批准号:
2020464 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FW-HTF-P: Collaborative Research: Wearable Safety and Health Assistive Robot Collaboration for Skilled Construction Workers
FW-HTF-P:合作研究:为熟练建筑工人提供可穿戴安全与健康辅助机器人协作
- 批准号:
2026575 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Photochemically Induced, Polymer-Assisted Deposition for 3D Printing of Micrometer-Wide and Nanometer-Thin Silver Structures
用于微米宽和纳米薄银结构 3D 打印的光化学诱导聚合物辅助沉积
- 批准号:
1947753 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER: Integrated Optofluidic Chips towards Label-Free Detection of Exosomal MicroRNA Biomarkers
职业:集成光流控芯片实现外泌体 MicroRNA 生物标志物的无标记检测
- 批准号:
1847324 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Low-Profile Ultra-Wideband Wide-Scanning Multi-Function Beam-Steerable Array Antennas
薄型超宽带宽扫描多功能波束可控阵列天线
- 批准号:
EP/S005625/1 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Enhancing CO2 Reduction by Controlling the Ensemble of Active Sites
通过控制活动站点的整体来加强二氧化碳减排
- 批准号:
1930013 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Interplay of Mass Transport and Chemical Kinetics in the Electroreduction CO2
电还原 CO2 中传质与化学动力学的相互作用
- 批准号:
1803482 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Safety Guard: A Formal Approach to Safety Enforcement in Embedded Control Systems
CSR:小型:协作研究:安全卫士:嵌入式控制系统中安全执行的正式方法
- 批准号:
1813117 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant