XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
基本信息
- 批准号:1439005
- 负责人:
- 金额:$ 20.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The impact of Big Data is all around us and is enabling a plethora of commercial services. Further it is establishing the fourth paradigm of scientific investigation where discovery is based on mining data rather than from theories verified by observation. Big Data has established a new discipline (Data Science) with vibrant research activities across several areas of computer science. This ?Rapid Python Deep Learning Infrastructure? (RaPyDLI) project advances Deep Learning (DL) which is a novel exciting artificial intelligence approach to Big Data problems, which also involves a sophisticated model and a corresponding ?big compute? needing high end supercomputer architectures. DL has already seen success in areas like speech recognition, drug discovery and computer vision where self-driving cars are an early target. DL uses a very general unbiased way of analyzing large data sets inspired by the brain as a set of connected neurons. As with the brain, the artificial neurons learn from experience corresponding to a ?training dataset? and the ?trained network? can be used to make decisions. Trained on voices, the DL network can enhance voice recognition and trained on images, the DL network can recognize objects in the image. A recent study by the Stanford participants in this project trained 10 billion connections on 10 million images to recognize objects in an image. This study involved a dataset that was approximately 0.1% the size of data ?learnt? by an adult human in their lifetime and one billionth of the total digital data stored in the world today. Note the 1.5 billion images uploaded to social media sites every day emphasize the staggering size of big data. The project aims to enhance by DL by allowing it to use large supercomputers efficiently and by providing a convenient DL computing environment that enables rapid prototyping i.e. interactive experimentation with new algorithms. This will enable DL to be applied to much larger datasets such as those ?seen? by a human in their lifetime. The RaPyDLI partnership of Indiana University, University of Tennessee, and Stanford enables this with expertise in parallel computing algorithms and run times, big data, clouds, and DL itself.RaPyDLI will reach out to DL practitioners with workshops both to gather requirements for and feedback on its software. Further it will proactively reach out to under-represented communities with summer experiences and DL curriculum modules that include demonstrations built as ?Deep Learning as a Service?.RaPyDLI will be built as a set of open source modules that can be accessed from a Python user interface but executed interoperably in a C/C++ or Java environment on the largest supercomputers or clouds with interactive analysis and visualization. RaPyDLI will support GPU accelerators and Intel Phi coprocessors and a broad range of storage approaches including files, NoSQL, HDFS and databases. RaPyDLI will include benchmarks as well as software and will offer a repository so users can contribute the high level code for a range of neural networks with benefits to research and education.
大数据的影响就在我们身边,并使大量的商业服务成为可能。此外,它正在建立科学调查的第四范式,发现是基于挖掘数据,而不是通过观察验证的理论。大数据已经建立了一个新的学科(数据科学),在计算机科学的几个领域开展了充满活力的研究活动。这个吗快速Python深度学习基础设施?(RaPyDLI)项目推进深度学习(DL),这是一种新的令人兴奋的人工智能方法来解决大数据问题,其中还涉及一个复杂的模型和相应的?大型计算机?需要高端的超级计算机架构DL已经在语音识别、药物发现和计算机视觉等领域取得了成功,自动驾驶汽车是这些领域的早期目标。DL使用一种非常通用的无偏方法来分析大型数据集,这些数据集受到大脑作为一组连接神经元的启发。与大脑一样,人工神经元从经验中学习,对应于一个?训练数据集?还有培训网?可以用来做决定。在语音上训练,DL网络可以增强语音识别,在图像上训练,DL网络可以识别图像中的对象。斯坦福大学参与者最近的一项研究在1000万张图像上训练了100亿个连接,以识别图像中的物体。这项研究涉及的数据集,大约是0.1%的数据大小?学会了?一个成年人一生中所存储的数字数据,以及当今世界存储的数字数据总量的十亿分之一。请注意,每天上传到社交媒体网站的15亿张图像强调了大数据的惊人规模。该项目旨在通过允许其有效地使用大型超级计算机并通过提供方便的DL计算环境来增强DL,从而实现快速原型设计,即使用新算法进行交互式实验。这将使DL能够应用于更大的数据集,如那些?看见了吗?一个人的一生。RaPyDLI与印第安纳州大学、田纳西大学和斯坦福大学的合作伙伴关系使其能够利用并行计算算法和运行时、大数据、云和DL本身的专业知识实现这一目标。RaPyDLI将通过研讨会与DL从业者接触,收集对其软件的需求和反馈。此外,它将主动接触到代表性不足的社区与夏季经验和DL课程模块,包括示范建成?深度学习作为一种服务?RaPyDLI将构建为一组开源模块,可以从Python用户界面访问,但可以在最大的超级计算机或云上的C/C++或Java环境中互操作地执行,并进行交互式分析和可视化。RaPyDLI将支持GPU加速器和Intel Phi协处理器,以及广泛的存储方法,包括文件,NoSQL,HDFS和数据库。RaPyDLI将包括基准和软件,并将提供一个存储库,以便用户可以为一系列神经网络贡献高级代码,从而有利于研究和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ng其他文献
Balancing the Need for Sustainable Oil Palm Development and Conservation : The Lower Kinabatangan Floodplains Experience
平衡可持续油棕开发和保护的需求:京那巴当岸下游洪泛区的经验
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
T. Hai;Andrew Ng;C. Prudente;Caroline Pang;J. Tek;C. Yee - 通讯作者:
C. Yee
Calcification boundary detection in coronary artery using intravascular ultrasound images
使用血管内超声图像检测冠状动脉钙化边界
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hannah Sofian;Andrew Ng;J. Than;Suraya Mohamad;N. Noor - 通讯作者:
N. Noor
MP01-12 PREDICTORS OF GENITOURINARY MALIGNANCY AMONG PATIENTS WITH PRIMARY MICROSCOPIC HEMATURIA
- DOI:
10.1016/j.juro.2016.02.1842 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Paras Shah;Patrick Samson;Derek Friedman;Karly Stoltman;Vinay Patel;Simpa Salami;Andrew Ng;Manaf Alom;Jessica Kreshover;Joph Steckel;Manish Vira;Lee Richstone;Louis Kavoussi;Justin Han - 通讯作者:
Justin Han
Submandibular tissue obstruction of tracheostomy tube: Reversal with “chin sling”
- DOI:
10.1016/s0147-9563(96)80119-1 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:
- 作者:
Jyothi Mallepalli;Iris Gonzalez;Andrew Ng;Albert F.R. Andresen;Robert D. Brandstetter - 通讯作者:
Robert D. Brandstetter
Unlocking Robust Segmentation Across All Age Groups via Continual Learning
通过持续学习解锁所有年龄段的稳健细分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chih;Jeya Maria Jose Valanarasu;Camila Gonzalez;Curtis P. Langlotz;Andrew Ng;S. Gatidis - 通讯作者:
S. Gatidis
Andrew Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ng', 18)}}的其他基金
EFRI-COPN Deep Learning in the Mammalian Visual Cortex
EFRI-COPN 哺乳动物视觉皮层深度学习
- 批准号:
0835878 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
CRI: STAIR the Stanford AI Robot Project
CRI:斯坦福人工智能机器人项目 STAIR
- 批准号:
0551737 - 财政年份:2006
- 资助金额:
$ 20.25万 - 项目类别:
Continuing Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1720635 - 财政年份:2016
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: A Parallel Tensor Infrastructure (ParTI!) for Data Analysis
XPS:完整:DSD:用于数据分析的并行张量基础设施 (PartTI!)
- 批准号:
1533768 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Parallel Motion Planning for Cloud-connected Robots
XPS:完整:DSD:云连接机器人的并行运动规划
- 批准号:
1533844 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533933 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533771 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533797 - 财政年份:2015
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
- 批准号:
1438955 - 财政年份:2014
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439052 - 财政年份:2014
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439007 - 财政年份:2014
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant