XPS: FULL: DSD: Parallel Motion Planning for Cloud-connected Robots

XPS:完整:DSD:云连接机器人的并行运动规划

基本信息

项目摘要

Robots are entering new domains, from self-driving vehicles on real-world streets, to autonomous aerial vehicles for package delivery, to assistive robots helping people with disabilities in their homes with daily activities. Autonomous robots in these domains often need extensive computational resources for motion planning, which involves computing a safe motion for a robot through an environment that avoids obstacles and accomplishes the task. To enable low-power mobile robots to achieve their full potential, new algorithms and software frameworks are needed that fully leverage parallel computation and the warehouse-scale computing available via the cloud. This project aims to develop a new software framework for motion planning for cloud-connected robots that effectively parallelizes motion planning and distributes the computation across the robot's embedded multicore processor and multiple cloud-based compute servers. This research combines ideas from multiple areas of computer science and engineering, including robotics, parallel algorithms, high-performance computing, motion planning, and cloud computing. Locally on the robot, the project parallelizes traditional motion planners to fully leverage low-power, embedded multicore processors. Simultaneously, the project enables the robot to request computation time from cloud-based resources to significantly increase the computing power available for the motion planning task, and thus increase the responsiveness and quality of motion plans. The new algorithms and software aim to enable robots to autonomously complete tasks in new domains where the challenge of motion planning is currently prohibitive, broadening the applicability of robots to new societally-relevant domains. The concepts and software developed in this project are being integrated into undergraduate and graduate courses taught across topics ranging from robotics to high-performance computing. Another goal of the project is to create fun, hands-on, interactive demonstrations using cloud-connected robots to inspire children to consider STEM fields.
机器人正在进入新的领域,从现实世界街道上的自动驾驶车辆,到用于包裹递送的自动飞行器,再到帮助残疾人在家中进行日常活动的辅助机器人。这些领域中的自主机器人通常需要大量的计算资源来进行运动规划,这涉及计算机器人通过避开障碍物并完成任务的环境的安全运动。为了使低功耗移动的机器人能够充分发挥其潜力,需要新的算法和软件框架,以充分利用并行计算和通过云提供的仓库规模计算。 该项目旨在为云连接机器人的运动规划开发一个新的软件框架,有效地并行化运动规划,并将计算分布在机器人的嵌入式多核处理器和多个基于云的计算服务器上。这项研究结合了计算机科学和工程多个领域的想法,包括机器人技术,并行算法,高性能计算,运动规划和云计算。在机器人本地,该项目将传统的运动规划器并行化,以充分利用低功耗的嵌入式多核处理器。同时,该项目使机器人能够从基于云的资源中请求计算时间,以显着提高运动规划任务的计算能力,从而提高运动规划的响应能力和质量。新的算法和软件旨在使机器人能够在新的领域自主完成任务,在这些领域中,运动规划的挑战目前是禁止的,从而扩大了机器人在新的社会相关领域的适用性。在这个项目中开发的概念和软件正在被整合到本科和研究生课程中,从机器人技术到高性能计算。该项目的另一个目标是使用云连接机器人创建有趣的、动手的、互动的演示,以激励孩子们考虑STEM领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ron Alterovitz其他文献

Simulation of Needle Insertion and Tissue Deformation for Modeling Prostate Brachytherapy
  • DOI:
    10.1016/j.brachy.2010.02.118
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nuttapong Chentanez;Ron Alterovitz;Daniel Ritchie;Lita Cho;Kris K. Hauser;Ken Goldberg;Jonathan R. Shewchuk;James F. O'Brien
  • 通讯作者:
    James F. O'Brien

Ron Alterovitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ron Alterovitz', 18)}}的其他基金

NSF-BSF: RI: Small: Provably High-Quality Robot Inspection Planning - Theory and Application
NSF-BSF:RI:小型:可证明的高质量机器人检测规划 - 理论与应用
  • 批准号:
    2008475
  • 财政年份:
    2020
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
Workshop: Robot Planning in the Real World: Research Challenges and Opportunities
研讨会:现实世界中的机器人规划:研究挑战和机遇
  • 批准号:
    1349355
  • 财政年份:
    2013
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
CAREER: Toward Automating Surgical Tasks
职业:实现手术任务自动化
  • 批准号:
    1149965
  • 财政年份:
    2012
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Continuing Grant
SHB: Small: Computing Robot Motions for Home Healthcare Assistance
SHB:小型:计算家庭医疗保健援助的机器人动作
  • 批准号:
    1117127
  • 财政年份:
    2011
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1720635
  • 财政年份:
    2016
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: A Parallel Tensor Infrastructure (ParTI!) for Data Analysis
XPS:完整:DSD:用于数据分析的并行张量基础设施 (PartTI!)
  • 批准号:
    1533768
  • 财政年份:
    2015
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1533933
  • 财政年份:
    2015
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
  • 批准号:
    1533771
  • 财政年份:
    2015
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
  • 批准号:
    1533753
  • 财政年份:
    2015
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1533797
  • 财政年份:
    2015
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
  • 批准号:
    1438955
  • 财政年份:
    2014
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
  • 批准号:
    1439052
  • 财政年份:
    2014
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
  • 批准号:
    1439007
  • 财政年份:
    2014
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
  • 批准号:
    1438967
  • 财政年份:
    2014
  • 资助金额:
    $ 67.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了