EARS: Future Wireless Broadband Access: Cross-Optimizing Hardware, Physical and Network Layers
EARS:未来无线宽带接入:交叉优化硬件、物理层和网络层
基本信息
- 批准号:1444060
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The availability of affordable and ubiquitous broadband connectivity is a necessary condition for prosperity since broadband wireless access impacts virtually all sectors of society and economy including education, healthcare, transportation, and security. In a vast and mixed urban/rural country such as the United States, providing high-speed broadband data access through the wired infrastructure can be costly. On the other hand, wireless can cover large areas and reach a large number of people very effectively. In addition, wireless is the preferred medium through which we connect to the Internet and enjoy a whole wealth of services such as entertainment, education, healthcare, e-commerce, social networking, and remote working. In this context, the ability to handle the predicted dramatic increase of demand for wireless data has become crucial not only for the wireless industry but, more in general, for the growth of our economy. While wireless connectivity has significantly improved over the past few decades, it is quite behind the theoretical and technological achievable limits and it cannot address future demand. With this in mind, this project develops an innovative multi-tier hierarchical infrastructure for next-generation cellular networks with densely deployed base stations, along with a set of well-integrated cross-layer design techniques for interference management and system optimization. This proposed approach may considerably improve the rate performance and user capacity, and is promising in bridging the gap between theory and practice for broadband wireless access. To support the drastically increased mobile data traffic in wireless broadband services, this work focuses on a systematic cross-layer system optimization approach that relies on three major pillars: 1) at the physical layer, base stations with massive multiple-input multiple-output antenna systems are used; 2) at the wireless network architecture level, a multi-tier heterogeneous network approach is selected, achieving unprecedented spatial spectrum reuse; 3) at the cross-layer optimization level, a holistic network utility maximization approach is proposed, that systematically obtains layered protocol architectures from the structure of the global optimization solution. In relation to the above pillars, the fundamental challenges that will be addressed in this project are: 1) the design of integrated and power-efficient reconfigurable massive multiple-input multiple-output front-end antenna systems based on the concept of hybrid beamforming, i.e., on the optimal splitting of multiuser precoding and inter-cell interference management functions between digital baseband processing and analog radio frequency beamforming; 2) the design of hybrid beamforming schemes that exploit long-term channel statistics for inter-cell coordinated interference management, and instantaneous channel state information to achieve spatial multiplexing gain in each cell; 3) a user partitioning and scheduling approach based on clustering the user space according to quality of experience requirements, channel statistics and mobility, assigning network utility functions to the different user groups, solving the combined network utility maximization problem and systematically deriving a layered protocol architecture from the structural properties of the optimization solution. In addition, the work will significantly extend current mathematical performance analysis of wireless networks, based on advanced tools from stochastic geometry and random matrix theory, in order to assess quantitatively the performance gains over current technology of the proposed approach. Last, small-scale experiments will be conducted with software-defined radios equipped with the front end that will be developed.
提供负担得起的和无处不在的宽带连接是繁荣的必要条件,因为宽带无线接入几乎影响到社会和经济的所有部门,包括教育,医疗保健,交通和安全。在美国这样一个幅员辽阔、城乡混杂的国家,通过有线基础设施提供高速宽带数据接入可能成本高昂。另一方面,无线可以覆盖大面积,非常有效地到达大量人群。此外,无线是我们连接到互联网并享受各种服务(如娱乐、教育、医疗保健、电子商务、社交网络和远程工作)的首选媒介。在这种情况下,处理对无线数据的需求的预测急剧增加的能力不仅对无线行业而且更普遍地对我们的经济增长变得至关重要。虽然无线连接在过去几十年中得到了显著改善,但它远远落后于理论和技术可实现的极限,无法满足未来的需求。考虑到这一点,该项目开发了一个创新的多层分层基础设施,为下一代蜂窝网络与密集部署的基站,沿着与一套集成良好的跨层设计技术的干扰管理和系统优化。该方法可以显著提高系统的速率性能和用户容量,有望弥补宽带无线接入理论与实践之间的差距。为了支持无线宽带服务中急剧增加的移动的数据业务,这项工作集中在系统的跨层系统优化方法上,该方法依赖于三个主要支柱:1)在物理层,使用具有大规模多输入多输出天线系统的基站; 2)在无线网络架构层面,选择了多层异构网络方式,实现了前所未有的空间频谱复用; 3)在跨层优化层面,提出了整体网络效用最大化方法,从全局优化解的结构中系统地获得分层协议架构。关于上述支柱,本项目将解决的基本挑战是:1)基于混合波束成形概念的集成和功率高效的可重构大规模多输入多输出前端天线系统的设计,即,关于数字基带处理和模拟射频波束成形之间的多用户预编码和小区间干扰管理功能的最佳划分; 2)混合波束成形方案的设计,其利用长期信道统计用于小区间协调干扰管理,并且利用瞬时信道状态信息来实现每个小区中的空间复用增益; 3)基于根据体验质量要求、信道统计和移动性对用户空间进行聚类,向不同用户组分配网络效用函数,解决组合的网络效用最大化问题,并从优化解决方案的结构属性系统地导出分层协议体系结构。此外,这项工作将显着扩展当前的数学性能分析的无线网络,从随机几何和随机矩阵理论的先进工具的基础上,以定量评估性能增益超过目前的技术所提出的方法。最后,将使用配备了将开发的前端的软件定义无线电进行小规模实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Psounis其他文献
Operational information content sum capacity: From theory to practice
- DOI:
10.1016/j.comnet.2014.08.017 - 发表时间:
2014-12-24 - 期刊:
- 影响因子:
- 作者:
Ertugrul N. Ciftcioglu;Antonios Michaloliakos;Aylin Yener;Konstantinos Psounis;Thomas F. La Porta;Ramesh Govindan - 通讯作者:
Ramesh Govindan
Konstantinos Psounis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Psounis', 18)}}的其他基金
SaTC: Frontiers: Collaborative: Protecting Personal Data Flow on the Internet
SaTC:前沿:协作:保护互联网上的个人数据流
- 批准号:
1956435 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Privacy-Preserving Mobile Crowdsourced Data
CNS 核心:媒介:协作研究:保护隐私的移动众包数据
- 批准号:
1901488 - 财政年份:2019
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
NeTS: Small: Spectrum Sharing Systems for Wireless Networks: Performance and privacy challenges
NeTS:小型:无线网络频谱共享系统:性能和隐私挑战
- 批准号:
1618450 - 财政年份:2016
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
NEDG: Contention-Awareness in Mesh Transport: Theory and Practice
NEDG:网状传输中的竞争意识:理论与实践
- 批准号:
0832161 - 财政年份:2008
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
NeTS-NBD: Efficient Routing in Delay Tolerant Networks
NeTS-NBD:延迟容忍网络中的高效路由
- 批准号:
0520017 - 财政年份:2005
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
相似海外基金
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 68万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Collaborative Research: Beamforming, User Association and Precise Positioning in Future Terahertz-Enabled Wireless Networks
合作研究:未来太赫兹无线网络中的波束成形、用户关联和精确定位
- 批准号:
2234122 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications'
ECCS-EPSRC - 用于毫米波未来一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X01214X/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Cell-Free Massive MIMO for Future Wireless Networks
面向未来无线网络的无蜂窝大规模 MIMO
- 批准号:
EP/X013162/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Cell-free massive MIMO for future wireless networks
适用于未来无线网络的无蜂窝大规模 MIMO
- 批准号:
EP/X01309X/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Collaborative Research: Beamforming, User Association and Precise Positioning in Future Terahertz-Enabled Wireless Networks
合作研究:未来太赫兹无线网络中的波束成形、用户关联和精确定位
- 批准号:
2234123 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
ECCS-EPSRC: Advanced III-N Devices and Circuit Architectures for mm-Wave Future Generation Wireless Communication
ECCS-EPSRC:用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
2303897 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Digital Transformation of Electromagnetic Material Design and Manufacturing for Future Wireless Connectivity (DREAM)
面向未来无线连接的电磁材料设计和制造的数字化转型 (DREAM)
- 批准号:
EP/X02542X/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant














{{item.name}}会员




