ECCS-EPSRC: Advanced III-N Devices and Circuit Architectures for mm-Wave Future Generation Wireless Communication

ECCS-EPSRC:用于毫米波下一代无线通信的先进 III-N 器件和电路架构

基本信息

  • 批准号:
    2303897
  • 负责人:
  • 金额:
    $ 39.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Ubiquitous, high-performance communication is the backbone of our society, and promises to play an increasing role not only in individual's daily lives, but just as importantly in the background with communication among devices (e.g., vehicle-to- infrastructure for mobility, process control and monitoring in industrial and manufacturing, virtualization of full environments for the metaverse, among others). The resulting explosion in data that must be processed and communicated requires extraordinary bandwidth and network ubiquity, which in turn demands supporting electronics that is high performance, power efficient, and low cost. This proposal targets advancements in the most critical link, the wireless power amplifier, that is essential to realizing a vision of ubiquitous, high-speed, transparent mobile communication. Power amplifiers are among the most critical elements in any communication system as they dictate the overall efficiency of the system. GaN-based HEMTs are especially promising for high-performance power amplifiers, but current GaN-based systems suffer from limited frequency coverage, efficiency and linearity due to a combination of factors, including device design and materials issues. In this program, we leverage transformative advances in both GaN-based transistor design and novel circuit topologies to dramatically improve the efficiency, bandwidth, linearity, and cost of the key wireless elements of a communication system, through co-design. The technology is based on polarization-engineered graded channel GaN HEMTs that show a substantial improvement in linearity in comparison to conventional HEMTs. By combining with thorough investigation of their underlying device physics including trap states and thermal management, we address major effects that degrade the performance of GaN at increasing frequencies (i.e. Ka band up to 40 GHz) by optimizing device design and fabrication. We will design harmonically terminated amplifiers based on our new class of contiguous modes, that allow designers wider choice of impedances for desired characteristics of efficiency, linearity and output power. This will greatly enhance the promise and potential of future communication systems, such as 6G wireless communications.The proposed technology development will be based on recent advances in polarization engineering in III-N materials and devices. We will demonstrate high-linearity, high-efficiency polarization-engineered GaN transistors, with performance sufficient to eliminate the need for external linearization in wireless power amplifiers. This program targets third-order intermodulation products below -30 dBc under large-signal conditions, sufficient to support a PAE 50% under operational (rather than saturated) conditions. At this performance level, the adjacent channel power ratio (ACPR) is anticipated to be sufficient to meet regulatory performance mandates without complex and costly linearizers. We will also demonstrate high-linearity broadband amplifiers with PAE 50% and high tolerance to impedance mismatch, through the use of our new class of contiguous mode amplifiers to provide designers a flexible design space for optimizing linearity, output power and efficiency. To advance physical understanding, an in-depth study of the underlying device physics of polarization engineered GaN HEMTs, with nanometer scale resolution. This will provide thorough understanding of process, device and memory effects at both the device and circuit level, which is critical to meeting the device and circuit performance targets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无处不在的高性能通信是我们社会的支柱,不仅在个人的日常生活中发挥着越来越重要的作用,而且在设备之间的通信(例如,用于移动性的车辆到基础设施、工业和制造业的过程控制和监控、虚拟现实的完整环境的虚拟化等)中也同样重要。由此产生的必须处理和通信的数据爆炸式增长需要极高的带宽和网络普及,这反过来又需要高性能、高能效和低成本的支持电子设备。这项提议的目标是在最关键的链路--无线功率放大器方面取得进展,这对于实现无所不在、高速、透明的移动通信的愿景至关重要。功率放大器是任何通信系统中最关键的元件之一,因为它们决定了系统的整体效率。GaN基HEMT尤其适用于高性能功率放大器,但由于器件设计和材料问题等多种因素的综合作用,目前的GaN基系统存在频率覆盖、效率和线性度有限等问题。在这个项目中,我们利用基于GaN的晶体管设计和新的电路拓扑的变革性进步,通过合作设计显著提高通信系统的关键无线元件的效率、带宽、线性度和成本。这项技术是基于极化工程的梯度沟道GaN HEMT,与传统的HEMT相比,这种器件在线性度方面有了实质性的改善。通过结合对其潜在器件物理(包括陷阱态和热管理)的深入研究,我们通过优化器件设计和制造,解决了在不断增加的频率(即Ka频段高达40 GHz)时降低GaN性能的主要影响。我们将基于我们的新型连续模式设计谐波端接放大器,允许设计者为所需的效率、线性度和输出功率特性提供更广泛的阻抗选择。这将极大地增强未来通信系统的前景和潜力,例如6G无线通信。拟议的技术开发将基于III-N材料和器件偏振工程的最新进展。我们将展示高线性度、高效率的极化工程GaN晶体管,其性能足以消除无线功率放大器中外部线性化的需要。该计划的目标是大信号条件下低于-30 dBc的三阶互调产品,在运行(而不是饱和)条件下足以支持50%的PAE。在这种性能水平下,邻道功率比(ACPR)预计足以满足监管性能要求,而无需复杂且昂贵的线性化。我们还将展示PAE为50%、阻抗失配容忍度高的高线性度宽带放大器,通过使用我们的新型连续模式放大器,为设计者提供优化线性度、输出功率和效率的灵活设计空间。为了促进物理理解,深入研究了极化工程GaN HEMT的基本器件物理,具有纳米级的分辨率。这将提供对器件和电路级别的工艺、器件和存储器效应的透彻了解,这对实现器件和电路性能目标至关重要。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarization-Graded HEMTs for Improved Johnson’s Figure of Merit
用于改进约翰逊品质因数的偏振分级 HEMT
Advances in Millimetre-Wave III-N Transistor Performance Through Polarization-Graded Heterostructures
通过极化分级异质结构提高毫米波 III-N 晶体管性能
Electric field control and exploitation in III-N devices
III-N 器件中的电场控制和开发
  • DOI:
    10.1117/12.3012903
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fay, Patrick;Duan, Yu;Zhu, Zhongtao;Venkatesan, Nivedhita
  • 通讯作者:
    Venkatesan, Nivedhita
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Fay其他文献

Temperature Dependence of High Frequency and Noise Performance of Sb-Heterostructure Millimeter-Wave Detectors
锑异质结构毫米波探测器的高频和噪声性能的温度依赖性
  • DOI:
    10.1109/led.2007.895377
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    N. Su;Ze Zhang;J. Schulman;Patrick Fay
  • 通讯作者:
    Patrick Fay
1.7-kV Vertical GaN p-n Diode with Triple-Zone Graded Junction Termination Extension Formed by Ion-Implantation
具有通过离子注入形成的三区渐变结终端扩展的 1.7kV 垂直 GaN p-n 二极管
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Duan;Jingshan Wang;Andy Xie;Zhongtao Zhu;Patrick Fay
  • 通讯作者:
    Patrick Fay
Low-Loss D-Band SIW Power Divider for Integrated Systems
适用于集成系统的低损耗 D 频段 SIW 功率分配器
Late breaking abstracts for the 29th ESPEN Congress
  • DOI:
    10.1016/j.eclnm.2007.08.001
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yu Duan;Jingshan Wang;Andy Xie;Zhongtao Zhu;Patrick Fay
  • 通讯作者:
    Patrick Fay
A D-band Frequency-Doubling Distributed Amplifier Through Monolithic Integration of SiC SIW and GaN HEMTs
通过 SiC SIW 和 GaN HEMT 单片集成的 D 频段倍频分布式放大器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Li;Tianze Li;Patrick Fay;James C. M. Hwang
  • 通讯作者:
    James C. M. Hwang

Patrick Fay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Fay', 18)}}的其他基金

Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
  • 批准号:
    2132329
  • 财政年份:
    2021
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
Advanced Tunneling-Based Detectors and Imaging Systems for Millimeter-Wave and THz Sensing and Imaging
用于毫米波和太赫兹传感和成像的先进隧道探测器和成像系统
  • 批准号:
    1508057
  • 财政年份:
    2015
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Traps in GaInAs/GaAsSb Multiple Quantum Well Structures
合作研究:GaInAs/GaAsSb 多量子阱结构中陷阱的表征
  • 批准号:
    0906842
  • 财政年份:
    2009
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Continuing Grant
Advanced Sensors for Millimeter-Wave Detection and Imaging [UND_FY06_008]
用于毫米波检测和成像的先进传感器 [UND_FY06_008]
  • 批准号:
    0610169
  • 财政年份:
    2006
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
NIRT: Extremely-Mismatched Materials for Advanced Nanoscale Devices
NIRT:用于先进纳米级器件的极其不匹配的材料
  • 批准号:
    0506950
  • 财政年份:
    2005
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
A Novel High-Speed Electrometer for Nanoscale Electronic Device Research
用于纳米电子器件研究的新型高速静电计
  • 批准号:
    0100075
  • 财政年份:
    2001
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
CAREER: Micromachining of Gallium Nitride and Related Materials for Microwave and Optoelectronic Applications
职业:用于微波和光电应用的氮化镓及相关材料的微加工
  • 批准号:
    9875600
  • 财政年份:
    1999
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant
Wireless Communications as a Catalyst for Curriculum Integration: A New Microwave Measurement and Design Laboratory
无线通信作为课程整合的催化剂:新的微波测量和设计实验室
  • 批准号:
    9850988
  • 财政年份:
    1998
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Standard Grant

相似海外基金

ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X012123/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
EPSRC Core Equipment Award 2022 - A multi-user XRD facility for Advanced Materials research
2022 年 EPSRC 核心设备奖 - 用于先进材料研究的多用户 XRD 设备
  • 批准号:
    EP/X035220/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications'
ECCS-EPSRC - 用于毫米波未来一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X01214X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
MAPP: EPSRC Future Manufacturing Hub in Manufacture using Advanced Powder Processes - Additional Funding
MAPP:EPSRC 未来制造中心使用先进粉末工艺进行制造 - 额外资金
  • 批准号:
    EP/X038661/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
EPSRC-SFI:Tailored Production and Utilisation of Sustainable Low Cost Lignocellulosic Advanced Biofuel Blends as Diesel and Petrol Substitutes:SusLABB
EPSRC-SFI:可持续低成本木质纤维素先进生物燃料混合物的定制生产和利用作为柴油和汽油替代品:SusLABB
  • 批准号:
    EP/T033088/1
  • 财政年份:
    2021
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
EPSRC-FNR Collaborative Proposal: Radiative Efficiency in Advanced Sulfide Chalcopyrites for Solar Cells (REACh)
EPSRC-FNR 合作提案:太阳能电池用先进硫化黄铜矿的辐射效率 (REACh)
  • 批准号:
    EP/V029231/1
  • 财政年份:
    2021
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grant
EPSRC and SFI Centre for Doctoral Training in the Advanced Characterisation of Materials (CDT-ACM)
EPSRC 和 SFI 材料高级表征博士培训中心 (CDT-ACM)
  • 批准号:
    EP/S023259/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Advanced Automotive Propulsion Systems
EPSRC 先进汽车推进系统博士培训中心
  • 批准号:
    EP/S023364/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Advanced Biomedical Materials
EPSRC 先进生物医学材料博士培训中心
  • 批准号:
    EP/S022201/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Training Grant
EPSRC and SFI Centre for Doctoral Training in Advanced Metallic Systems: Metallurgical Challenges for the Digital Manufacturing Environment
EPSRC 和 SFI 高级金属系统博士培训中心:数字制造环境的冶金挑战
  • 批准号:
    EP/S022635/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了