EAGER: Effective Detection of Vulnerabilities and Linguistic Stratification in Open Source Software
EAGER:有效检测开源软件中的漏洞和语言分层
基本信息
- 批准号:1445079
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Software vulnerabilities are weaknesses in the code that may be exploited by cybercriminals to harm a system. They often do not hinder a program's functionality, and are thus difficult to detect. This project focuses on developing methods to identify such "weak spots" in a program, where vulnerabilities are more likely to occur. The approach used for detecting weak spots is based on the novel idea of examining linguistic patterns employed by code developers in Open-Source Software (OSS) online communities. Using a combination of natural language processing methods and sociolinguistic analyses, the PIs research the links between a programmer's role within a social hierarchy of trust and influence and his or her skills in producing code that avoids vulnerabilities and adheres to the communal cybersecurity standards. The research results in a faster way to identify vulnerabilities, therefore contributing to make programs safer. It also contributes to understanding of the natural properties of code and the social dynamics of communication in online groups, laying the foundation for further research into linguistic aspects of software engineering.
软件漏洞是代码中的弱点,可能被网络犯罪分子利用来损害系统。它们通常不会妨碍程序的功能,因此很难检测到。这个项目的重点是开发方法来识别程序中更容易出现漏洞的“弱点”。用于检测弱点的方法基于一种新的想法,即检查开放源代码软件(OSS)在线社区中的代码开发人员使用的语言模式。利用自然语言处理方法和社会语言学分析相结合的方法,PI研究程序员在信任和影响的社会等级中的角色与他或她在生成避免漏洞并遵守公共网络安全标准的代码方面的技能之间的联系。这项研究的结果是以一种更快的方式识别漏洞,从而有助于使程序更安全。它还有助于理解代码的自然属性和在线群体中交流的社会动态,为进一步研究软件工程的语言方面奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul Aranovich其他文献
Raul Aranovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul Aranovich', 18)}}的其他基金
CICI: SSC: TrOnto - A Community-Based Ontology for a Trustworthy and ResiliCent Scientific Cyberspace
CICI:SSC:TrOnto - 基于社区的本体论,打造值得信赖且有弹性的科学网络空间
- 批准号:
1840191 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: Secure and Scalable Collaboration Platform for Effective Detection of Money Laundering and Fraudulent Transactions
SBIR 第一阶段:用于有效检测洗钱和欺诈交易的安全且可扩展的协作平台
- 批准号:
2126901 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Design and development of portable, high-resolution and cost-effective micromachined transducers for lung and breast cancer detection at early stages
设计和开发便携式、高分辨率且经济高效的微机械传感器,用于早期肺癌和乳腺癌检测
- 批准号:
569413-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Simple and Effective Screening tool for supporting early detection of brain cancer
简单有效的筛查工具,支持早期发现脑癌
- 批准号:
10027624 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Excellence in Research: Improving the Integrity and Security of Integrated Circuits Through Effective Detection of Malicious Alterations
卓越的研究:通过有效检测恶意篡改提高集成电路的完整性和安全性
- 批准号:
2200681 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BloomSafe: Developing a cost-effective, rapid and portable diagnostic tool for the detection of toxins resulting from algal blooms
BloomSafe:开发一种经济高效、快速且便携式的诊断工具,用于检测藻华产生的毒素
- 批准号:
NE/X011607/1 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Research Grant