EAGER: Identifying Blockmodel Functional Modules across Multiple Networks

EAGER:识别跨多个网络的 Blockmodel 功能模块

基本信息

项目摘要

Broader Significance and Importance: Due to the high complexity of analyzing high-throughput omics data, most of the existing computational methods separately analyze the data collected from different sources. Furthermore, they typically assume that the available prior biology knowledge, such as molecular interactions manifested as biological networks, is accurate. As the existing curated molecular interactions and functionalities across public databases still have unsatisfactory coverage or consistency, it is critical to develop effective analysis methods that can achieve biologically meaningful solutions by integrating diverse evidence from multiple biological networks. The objective of the proposed research is to develop a network-based mathematical framework and a set of new computational algorithms for the integrative analysis of multiple networks. The proposed research has strong transformative potentials in network biology. If successful, it can eventually lead to computational tools for more accurate and reliable identification of novel biomarkers and functional pathways. Beyond that, through the ongoing collaborations with biologists and physicians, it will open up new applications of network analysis methods to improve our understanding of complex human diseases. The interdisciplinary nature of this proposal promises to foster cross-fertilization of ideas between engineering and biology through research and education.Technical Description: The proposed research investigates integrative analysis of multiple biological networks, which are often noisy, to robustly identify biologically significant functional modules. The proposed mathematical framework provides a platform to address both critical issues in multiple network analysis regarding the computational complexity and biological significance by simultaneously analyzing multiple networks in a modular space. The advantage of integrative analysis of multiple biological networks is two-fold: First, cellular functional pathways that carry out critical functionalities are likely to be conserved across different organisms. Multiple network analysis will improve the performance of functional module identification. Second, new evidence from the analysis of identified modules may effectively transfer previously accrued knowledge to more confident curation and annotation of molecular relationships and the underlying cellular mechanisms. The proposed research and education activities are to: 1) design a new mathematical model for multiple biological network analysis to identify network modules for better understanding functional organization of cells and the complex cellular mechanisms; 2) devise effective and efficient optimization algorithms, including mathematical programming and stochastic optimization algorithms, to solve the optimization problems at different levels of complexity; 3) evaluate the performance of the proposed methods by constructing biologically realistic benchmark datasets; 4) apply the methods to systems biology research through collaboration with biomedical researchers; and 5) integrate research findings into the education and training of students with various academic backgrounds in the interdisciplinary field of computational network biology.
更广泛的意义和重要性:由于分析高通量组学数据的高度复杂性,现有的大多数计算方法分别分析来自不同来源的数据。此外,他们通常假设现有的生物学知识,如表现为生物网络的分子相互作用,是准确的。由于现有的跨公共数据库的分子相互作用和功能的覆盖范围和一致性仍然不令人满意,因此开发有效的分析方法,通过整合来自多个生物网络的不同证据来获得具有生物学意义的解决方案至关重要。提出的研究目标是开发一个基于网络的数学框架和一套新的计算算法,用于多个网络的综合分析。该研究在网络生物学领域具有强大的变革潜力。如果成功,它最终可以导致计算工具更准确和可靠地识别新的生物标志物和功能途径。除此之外,通过与生物学家和医生的持续合作,它将开辟网络分析方法的新应用,以提高我们对复杂人类疾病的理解。该提案的跨学科性质有望通过研究和教育促进工程和生物学之间的思想交流。技术描述:提出的研究调查了多个生物网络的综合分析,这些网络通常是嘈杂的,以稳健地识别生物学上重要的功能模块。提出的数学框架提供了一个平台,通过同时分析模块化空间中的多个网络来解决多网络分析中关于计算复杂性和生物学意义的关键问题。对多种生物网络进行整合分析的优势有两个方面:首先,执行关键功能的细胞功能通路可能在不同的生物体中是保守的。多网络分析将提高功能模块识别的性能。其次,来自已识别模块分析的新证据可以有效地将先前积累的知识转化为更有信心的分子关系和潜在细胞机制的管理和注释。提出的研究和教育活动是:1)设计一个新的数学模型,用于多种生物网络分析,以识别网络模块,以便更好地理解细胞的功能组织和复杂的细胞机制;2)设计有效、高效的优化算法,包括数学规划和随机优化算法,解决不同复杂程度的优化问题;3)通过构建生物学上真实的基准数据集来评估所提出方法的性能;4)通过与生物医学研究人员的合作,将这些方法应用于系统生物学研究;5)将研究成果整合到计算网络生物学跨学科领域不同学术背景学生的教育和培训中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoning Qian其他文献

Functional module identification by block modeling using simulated annealing with path relinking
使用带有路径重新链接的模拟退火通过块建模来识别功能模块
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy
最佳杂交测序和组装:精确基因组重建和成本最小化策略的可行性条件
  • DOI:
    10.1016/j.compbiolchem.2017.03.016
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chun;Noushin Ghaffari;Xiaoning Qian;Byung
  • 通讯作者:
    Byung
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
Dense Surface Reconstruction With Shadows in MIS
MIS 中带阴影的密集表面重建
Towards Invariant Time Series Forecasting in Smart Cities
智慧城市中的不变时间序列预测

Xiaoning Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoning Qian', 18)}}的其他基金

Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
  • 批准号:
    2212419
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    2215573
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    1956219
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
  • 批准号:
    1812641
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
  • 批准号:
    1718513
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design
职业:知识驱动的分析、模型不确定性和实验设计
  • 批准号:
    1553281
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Tracking of KOR1 Protein Transport in Arabidopsis using Fluorescent-Timer Imaging System
EAGER:合作研究:使用荧光定时器成像系统追踪拟南芥中的 KOR1 蛋白转运
  • 批准号:
    1547557
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2015)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2015)
  • 批准号:
    1546793
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Projects
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
  • 批准号:
    DE240100340
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Identifying the goals and strategies people use to make others feel worse
确定人们用来让别人感觉更糟的目标和策略
  • 批准号:
    FT230100401
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    ARC Future Fellowships
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
  • 批准号:
    24K18100
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: OPP-PRF: Identifying Central and Peripheral Thermosensors in Eurythermal and Stenothermal Arctic Fishes
博士后奖学金:OPP-PRF:识别广温和窄温北极鱼类的中央和外周热传感器
  • 批准号:
    2317970
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Antecedents and consequences of cruise travel experience: Identifying contributors to well-being of cruise tourists.
邮轮旅行体验的前因和后果:确定邮轮游客福祉的贡献者。
  • 批准号:
    24K15536
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Identifying reaction mechanisms for the formation of stable interphases in lithium metal batteries
职业:确定锂金属电池中形成稳定界面的反应机制
  • 批准号:
    2338202
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了