Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
基本信息
- 批准号:1956219
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the proliferation of electronics has been driven by computing and consumer applications for a long time, integrated circuits (ICs) presently undergo accelerated integration into healthcare, transportation, robotics, and autonomous systems. In addition to provision of prescribed functionalities of sensing, computing, and processing, these ICs must meet stringent reliability specifications in order to safeguard performance and safety of the whole mission-critical system where deployed. Circuits designed to be fail-safe by design exhibit low occurrences of failure. However, having a sign of no failure under typical verification and test procedures yields no guarantee for meeting a given near-zero or extremely-low failure specification. On the other hand, exhaustiveness may never be achieved by brute-force failure detection, which results in an unacceptably high cost in simulation and testing. This project will develop efficient machine-learning techniques for extremely-rare circuit-failure detection without needing large amounts of expensive simulation or test data. The proposed techniques will enable cost-effective verification and test of reliability-critical ICs and mission-critical systems in general. The research undertaken will also enable the two groups at UC Santa Barbara and UT Dallas to educate and train undergraduate and graduate students, including women and underrepresented groups, thus expanding the and contributing to the much needed US technological workforce. It is believed that extracting critical failure information via machine learning within practical limits of available measurement or simulation data can go a long way towards extremely rare failure detection. This project centers on developing an active-learning framework that intelligently samples in the high-dimensional space of complex interacting design parameters, manufacturing variations, and operating conditions, achieving the goal of data-efficient detection of rare circuit failures. The targeted active-learning framework will be supported by the development of machine-learning model foundations and robust learning methods that can scale to high-dimensional parameter spaces. The key objective of this project is to make extremely-rare failure discovery and identification of the underlying failure mechanisms practically viable by extracting the maximum amount of useful information possible from a small amount of available data. The proposed extremely-rare failure discovery work will be broadly applicable to verification and failure analysis of analog, mixed-signal, radio-frequency, and memory circuits with stringent failure specifications and many other types of mission-critical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管很长一段时间以来,电子产品的激增一直是由计算和消费应用驱动的,但集成电路(IC)目前正在加速集成到医疗保健、交通运输、机器人和自主系统中。除了提供规定的传感、计算和处理功能外,这些IC还必须满足严格的可靠性要求,以确保部署的整个关键任务系统的性能和安全。被设计为故障安全的电路故障发生率很低。然而,在典型的验证和测试程序下没有故障的迹象不能保证满足给定的几乎为零或极低的故障规范。另一方面,通过暴力故障检测可能永远无法实现穷举,这导致了不可接受的高昂的模拟和测试成本。该项目将开发高效的机器学习技术,用于极其罕见的电路故障检测,而不需要大量昂贵的模拟或测试数据。拟议的技术将使对可靠性关键IC和任务关键系统的总体验证和测试具有成本效益。这项研究还将使加州大学圣巴巴拉分校和达拉斯分校的两个团队能够教育和培训本科生和研究生,包括女性和代表性不足的群体,从而扩大美国技术劳动力的规模,并为其做出贡献。人们认为,在可用测量或模拟数据的实际范围内通过机器学习提取关键故障信息可以在很长一段时间内实现极其罕见的故障检测。该项目的核心是开发一种主动学习框架,该框架在复杂的交互设计参数、制造变量和操作条件的高维空间中智能采样,实现数据高效检测罕见电路故障的目标。有针对性的主动学习框架将得到机器学习模型基础和可扩展到高维参数空间的稳健学习方法的发展的支持。这个项目的主要目标是通过从少量可用数据中提取尽可能多的有用信息,使极其罕见的故障发现和潜在故障机制的识别实际上是可行的。拟议的极罕见故障发现工作将广泛适用于具有严格故障规范的模拟、混合信号、射频和存储器电路以及许多其他类型的关键任务系统的验证和故障分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models
计算机模型功能校准的再现核希尔伯特空间方法
- DOI:10.1080/01621459.2021.1956938
- 发表时间:2021-07
- 期刊:
- 影响因子:3.7
- 作者:Tuo Rui;He Shiyuan;Pourhabib Arash;Ding Yu;Huang Jianhua Z.
- 通讯作者:Huang Jianhua Z.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoning Qian其他文献
Functional module identification by block modeling using simulated annealing with path relinking
使用带有路径重新链接的模拟退火通过块建模来识别功能模块
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yijie Wang;Xiaoning Qian - 通讯作者:
Xiaoning Qian
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy
最佳杂交测序和组装:精确基因组重建和成本最小化策略的可行性条件
- DOI:
10.1016/j.compbiolchem.2017.03.016 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Chun;Noushin Ghaffari;Xiaoning Qian;Byung - 通讯作者:
Byung
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji - 通讯作者:
Shuiwang Ji
Dense Surface Reconstruction With Shadows in MIS
MIS 中带阴影的密集表面重建
- DOI:
10.1109/tbme.2013.2257768 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Bingxiong Lin;Yu Sun;Xiaoning Qian - 通讯作者:
Xiaoning Qian
Towards Invariant Time Series Forecasting in Smart Cities
智慧城市中的不变时间序列预测
- DOI:
10.1145/3589335.3651897 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ziyi Zhang;Shaogang Ren;Xiaoning Qian;Nicholas Duffield - 通讯作者:
Nicholas Duffield
Xiaoning Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoning Qian', 18)}}的其他基金
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
- 批准号:
2212419 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
2215573 - 财政年份:2021
- 资助金额:
$ 56.7万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
- 批准号:
1812641 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
- 批准号:
1718513 - 财政年份:2017
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design
职业:知识驱动的分析、模型不确定性和实验设计
- 批准号:
1553281 - 财政年份:2016
- 资助金额:
$ 56.7万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Tracking of KOR1 Protein Transport in Arabidopsis using Fluorescent-Timer Imaging System
EAGER:合作研究:使用荧光定时器成像系统追踪拟南芥中的 KOR1 蛋白转运
- 批准号:
1547557 - 财政年份:2015
- 资助金额:
$ 56.7万 - 项目类别:
Continuing Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2015)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2015)
- 批准号:
1546793 - 财政年份:2015
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
EAGER: Identifying Blockmodel Functional Modules across Multiple Networks
EAGER:识别跨多个网络的 Blockmodel 功能模块
- 批准号:
1447235 - 财政年份:2014
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant