CAREER: Advancing the science and education of land surface-atmosphere interactions: Interweaving multiscale experimental and modeling approaches for Land Surface Models

职业:推进地表-大气相互作用的科学和教育:将地表模型的多尺度实验和建模方法交织在一起

基本信息

  • 批准号:
    1447533
  • 负责人:
  • 金额:
    $ 52.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

CAREER: Advancing the science and education of land surface-atmosphere interactions: Interweaving multiscale experimental and modeling approaches for Land Surface Models and experiential learning A critical challenge for Land Surface Models (LSMs) is to simulate processes at the surface and the subsurface and their feedbacks to the atmosphere. Even given the same climate forcings, LSMs predict different surface fluxes and soil moisture conditions. This is due to differences in the formulations of individual processes, parameterizations of those formulations, numerical solution methods and representation of spatial heterogeneity. All of these differences contribute to LSM prediction errors and uncertainty. Increasing confidence in climate predictions requires revisiting fundamental process understanding and using that understanding to improve representations of land-atmosphere feedbacks. This research seeks to address this challenge by answering questions on multiphase fluid transport mechanisms in surface soils and mass/energy exchange at the soil-atmosphere interface. New knowledge and modeling approaches will result in improved predictions for water supply and food security as well as environmental issues across the nation. Linked to the research plan is an educational framework for engaging minority middle school students in Science, Technology, Engineering and Mathematics (STEM). Focusing on the integrating theme of water and climate, the investigator will help students make the link between STEM they learn in the classroom and environmental water resource problems in their own backyards, motivating and preparing students to pursue college studies and ultimately careers in STEM fields. The integrated activities will help to build a scientifically literate and informed citizenry, while also answering critical water and climate questions. This project will contribute substantially to the goals of the NSF in the production of interdisciplinary knowledge and the education of middle-school students, young scientists and engineers. The overarching goal of this research is to advance our understanding and modeling of mass and energy exchange at the land-atmosphere interface over a wide range of scales, and ultimately improve LSMs that are utilized in global climate prediction. The proposed research will systematically explore how the shallow subsurface and the atmosphere, specifically the layer very close to the soil surface, interact, providing new insights into mass and thermal flux process interactions that will be integrated into LSMs. A focus on scaling based on process understanding at multiple scales will allow for process-rich parameterizations for multiple land-atmosphere interaction and subsurface processes that contribute to LSMs. This vision includes unique highly controlled mechanistic studies in the laboratory, leveraging of existing laboratory and field data, modeling of critical mass and energy dynamics, and the characterization of important interactions from the laboratory to the watershed scales that drive feedbacks to climate systems. Project results will yield unique, high-fidelity data that will greatly aid in improving our understanding and modeling of the processes affected by heterogeneity at various scales and the development of methods to mechanistically represent the proposed processes at the watershed scale. A suite of climate intermediate, and fine scale computational models will be used to guide observations and interpret data; process studies will provide new algorithms and process parameterizations and evaluate model performance. Computational models in conjunction with experimental data will enable the investigator to understand governing flow and transport mechanisms under different atmospheric forcing at different scales. This research is expected to improve the representation of mass and energy exchange processes across multiple scales at the soil-land-atmosphere interface.
职业:推进陆面-大气相互作用的科学和教育:陆面模型和经验学习的多尺度实验和建模方法的交织陆面模型(LSMs)的一个关键挑战是模拟地表和次表层的过程及其对大气的反馈。即使给定相同的气候强迫,LSM预测不同的地表通量和土壤水分条件。这是由于个别过程的公式、这些公式的参数化、数值求解方法和空间异质性的表示方法存在差异。所有这些差异都会导致LSM预测误差和不确定性。 增加对气候预测的信心需要重新审视对基本过程的理解,并利用这种理解来改善陆地-大气反馈的表现。本研究旨在通过回答表层土壤中多相流体传输机制和土壤-大气界面的质量/能量交换问题来应对这一挑战。新的知识和建模方法将改善对全国供水和粮食安全以及环境问题的预测。与研究计划相关联的是一个教育框架,用于让少数民族中学生参与科学,技术,工程和数学(STEM)。 专注于水和气候的综合主题,调查员将帮助学生在课堂上学习的STEM和他们自己后院的环境水资源问题之间建立联系,激励和准备学生追求大学学业,并最终在STEM领域的职业生涯。这些综合活动将有助于培养具有科学素养和知情的公民,同时也回答关键的水和气候问题。该项目将大大有助于国家科学基金会在产生跨学科知识和教育中学生、青年科学家和工程师方面的目标。 这项研究的总体目标是促进我们对大范围尺度上陆-气界面质量和能量交换的理解和建模,并最终改进用于全球气候预测的LSM。拟议的研究将系统地探索浅层地下和大气,特别是非常接近土壤表面的那一层,如何相互作用,为质量和热通量过程的相互作用提供新的见解,这些相互作用将被整合到LSM中。在多尺度的过程理解的基础上缩放的重点将允许过程丰富的参数化多个陆-气相互作用和地下过程,有助于LSMs。这一愿景包括在实验室中进行独特的高度受控的机理研究,利用现有的实验室和现场数据,对临界质量和能量动态进行建模,以及对从实验室到流域尺度的重要相互作用进行表征,这些相互作用驱动对气候系统的反馈。项目结果将产生独特的,高保真度的数据,这将大大有助于提高我们的理解和建模的过程中受到异质性影响的各种尺度和方法的发展,以机械地代表拟议的过程在流域尺度。一套气候中、细尺度计算模型将用于指导观测和解释数据;过程研究将提供新的算法和过程参数化,并评估模型性能。计算模型与实验数据相结合,将使研究人员能够了解不同尺度下不同大气强迫下的流动和输送机制。 这项研究有望提高土壤-陆地-大气界面跨多尺度物质和能量交换过程的代表性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Smits其他文献

Numerical modeling of non-isothermal gas flow and NAPL vapor transport in soil
  • DOI:
    10.1016/j.cpc.2016.01.011
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ondřej Pártl;Michal Beneš;Peter Frolkovič;Tissa Illangasekare;Kathleen Smits
  • 通讯作者:
    Kathleen Smits
Theorizing the “Social” in Socio-Hydrology: Incorporating Ethnographic Methods to Characterize Coupled Human-Water Systems in Rural Colombia
社会水文学中的“社会”理论:结合民族志方法来描述哥伦比亚农村地区的人水耦合系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Gibson;Jessica M. Smith;Kathleen Smits;Juan C. Lucena;Oscar Jaime Restrepo Baena
  • 通讯作者:
    Oscar Jaime Restrepo Baena

Kathleen Smits的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Smits', 18)}}的其他基金

CAREER: Advancing the science and education of land surface-atmosphere interactions: Interweaving multiscale experimental and modeling approaches for Land Surface Models
职业:推进地表-大气相互作用的科学和教育:将地表模型的多尺度实验和建模方法交织在一起
  • 批准号:
    1929792
  • 财政年份:
    2019
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
2016 Gordon Research Conference on Flow & Transport in Permeable Media:Bridging the Gap Between Scales and Processes for Strongly Coupled Systems; Girona, Spain; July 30-31, 20
2016年戈登心流研究会议
  • 批准号:
    1600392
  • 财政年份:
    2016
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Advancing ceramic processing science through acoustic characterization
职业:通过声学表征推进陶瓷加工科学
  • 批准号:
    2338898
  • 财政年份:
    2024
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
Advancing Career and Technical Skills: Through the science of material, nondestructive testing and welding education.
提升职业和技术技能:通过材料科学、无损检测和焊接教育。
  • 批准号:
    2400736
  • 财政年份:
    2024
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Standard Grant
CAREER: Advancing Light-mediated Ni Catalysis using Data Science and Physical Organic Techniques
职业:利用数据科学和物理有机技术推进光介导镍催化
  • 批准号:
    2235778
  • 财政年份:
    2023
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
CAREER: Advancing nanostructure & interface science for permanent magnets without rare earth materials
职业:推进纳米结构
  • 批准号:
    2142935
  • 财政年份:
    2022
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Scientific Knowledge of Tropical Mutualistic Network Science and Public Knowledge of Tropical Bee Importance
职业:推进热带互惠网络科学的科学知识和热带蜜蜂重要性的公众知识
  • 批准号:
    2142938
  • 财政年份:
    2022
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
Program for Advancing Early-Career Researcher Excellence through Leadership and Management Practices
通过领导力和管理实践促进早期职业研究人员卓越计划
  • 批准号:
    10670829
  • 财政年份:
    2021
  • 资助金额:
    $ 52.56万
  • 项目类别:
Advancing Academic Success and Career Development for Talented, Low-Income Computer Science, Mathematics, and Engineering Majors
促进有才华的低收入计算机科学、数学和工程专业学生的学业成功和职业发展
  • 批准号:
    2130267
  • 财政年份:
    2021
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Standard Grant
Program for Advancing Early-Career Researcher Excellence through Leadership and Management Practices
通过领导力和管理实践促进早期职业研究人员卓越计划
  • 批准号:
    10287253
  • 财政年份:
    2021
  • 资助金额:
    $ 52.56万
  • 项目类别:
Program for Advancing Early-Career Researcher Excellence through Leadership and Management Practices
通过领导力和管理实践促进早期职业研究人员卓越计划
  • 批准号:
    10456279
  • 财政年份:
    2021
  • 资助金额:
    $ 52.56万
  • 项目类别:
CAREER: Advancing the Role of Ontologies for Data Science in Biomedicine
职业:推进数据科学本体在生物医学中的作用
  • 批准号:
    2047001
  • 财政年份:
    2021
  • 资助金额:
    $ 52.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了