Electron-catalysed C-C coupling: an integrated experimental and computational approach

电子催化 C-C 耦合:一种集成的实验和计算方法

基本信息

  • 批准号:
    2752686
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

It has been estimated that more than 75% all C-C bonds in the pharmaceutical industry are made using transition-metal (TM) catalysis (J. Med. Chem. 2016, 59, 4443). This reliance on costly, finite, precious-metal resources has therefore raised serious concerns about the long-term sustainability of this life-changing industry. This project aims to address this crucial problem by developing a general, sustainable, TM-free approach to C-C bond formation using electron-catalysed radical-nucleophilic substitution (Nat. Chem. 2014, 6, 765). A key challenge in this emerging area of chemocatalysis (electron catalysis) is that, unlike conventional modes of catalysis where the source of the catalyst is obvious (e.g. as in Bronsted acid catalysis), the source of electrons in electron-catalysed reactions is often ambiguous. This project will seek to resolve this ambiguity by employing an integrated experimental and computational approach to study the overlooked role of weak intermolecular interactions in these reactions. This approach will merge the multidisciplinary expertise in the James Group on electron-catalysed reactions (Chem. Sci. 2021, 12, 14641; ChemRxiv 10.26434/chemrxiv-2022-9l5gq) and Trujillo Group using computational predictions to improve reaction design (WIREs Comput Mol Sci. 2022, e1616). This synergistic collaboration will ultimately enable longstanding mechanistic questions to be answered and empower the development of new electron-catalysed synthetic methodologies.Ethan will receive excellent training in organic synthesis using state-of-theart electron-catalysed chemistry. In addition to the experimental preparation, purification, and characterization of small organic molecules, he will also develop a diverse skillset using computational methods to study reaction mechanisms. Finally, the student will have the opportunity to attend organic problem classes, present their research at national or international meetings and interactwith industrial project partners.Methods for the formation of new C-C bonds are fundamental to the discovery of new bioactive molecules. To date, advances in this area have largely been driven by the development of new TM-catalysed coupling reactions. However, there are notable disadvantages associated with the use of TMs in synthesis, such as their cost, sustainability, and toxicity. Additionally, the supply of TMs can fluctuate dramatically as they must be imported from international mines, which also raises significant environmental and ethical concerns. There is therefore an urgent need to develop alternative TM-free coupling strategies that can circumvent these issues.This work will have a significant impact on the chemical and pharmaceutical industry (the second largest manufacturing sector in the UK) by providing a powerful new tool to be utilised in the cost-effective manufacture of next generation medicines and agrochemicals. By expediting research in this industry, untreated patients, or communities facing famine, who are waiting for new drugs or plant protection products to be developed will be indirect beneficiaries of this work.This work will also inspire wider developments in catalysis as innovation in this field is invariably driven by advances in our mechanistic understanding. This project will harness the full power of computational modelling to obtain new mechanistic insight and dramatically reduce the amount of time and resources that go into developing a new catalytic reaction. In addition to efficiency, this approach will encourage the synthetic community to widely re-evaluate what we truly know about seemingly "simple" reactions.Academically, this project will have a major impact on the career trajectories of newly appointed lectures Dr Michael James and Dr Cristina Trujillo, who will use this work to fuel future collaborations and the growth of an undeveloped field of catalysis
据估计,制药行业中超过75%的C-C键是使用过渡金属(TM)催化制成的(J. Med. Chem. 2016, 59, 4443)。因此,这种对昂贵、有限的贵金属资源的依赖,引发了人们对这个改变生活的行业的长期可持续性的严重担忧。该项目旨在通过开发一种通用的、可持续的、无tm的方法来解决这一关键问题,该方法使用电子催化的自由基-亲核取代来形成C-C键(Nat. Chem. 2014, 6,765)。化学催化(电子催化)这一新兴领域面临的一个关键挑战是,与催化剂来源明显的传统催化模式(例如,在Bronsted酸催化中)不同,电子催化反应中的电子来源往往是模糊的。该项目将通过采用综合实验和计算方法来研究这些反应中被忽视的弱分子间相互作用来解决这种模糊性。这种方法将融合詹姆斯小组在电子催化反应(化学)方面的多学科专业知识。科学学报,2021,12,14641;ChemRxiv 10.26434/ ChemRxiv 2022-9l5gq)和Trujillo Group使用计算预测改进反应设计(WIREs Comput Mol Sci. 2022, e1616)。这种协同合作最终将使长期存在的机械问题得到解答,并使新的电子催化合成方法得到发展。伊森将接受先进的电子催化化学有机合成方面的培训。除了小有机分子的实验制备,纯化和表征外,他还将开发使用计算方法研究反应机制的多种技能。最后,学生将有机会参加有机问题课程,在国内或国际会议上展示他们的研究,并与工业项目合作伙伴互动。形成新的C-C键的方法是发现新的生物活性分子的基础。迄今为止,这一领域的进展主要是由新的tm催化偶联反应的发展所推动的。然而,在合成中使用TMs有明显的缺点,例如它们的成本、可持续性和毒性。此外,TMs的供应可能波动很大,因为它们必须从国际矿山进口,这也引起了重大的环境和道德问题。因此,迫切需要开发替代的无tm耦合策略,以规避这些问题。这项工作将对化学和制药工业(英国第二大制造业)产生重大影响,为下一代药物和农用化学品的成本效益制造提供了一种强大的新工具。通过加速该行业的研究,等待新药或植物保护产品开发的未经治疗的患者或面临饥荒的社区将成为这项工作的间接受益者。这项工作也将激发催化领域更广泛的发展,因为这一领域的创新总是由我们对机械理解的进步所驱动的。该项目将利用计算建模的全部力量来获得新的机理见解,并大大减少开发新的催化反应所需的时间和资源。除了效率之外,这种方法还将鼓励合成界广泛地重新评估我们对看似“简单”的反应的真正了解。在学术上,该项目将对新任命的讲师Michael James博士和Cristina Trujillo博士的职业轨迹产生重大影响,他们将利用这项工作推动未来的合作和催化未开发领域的发展

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Iron-Catalysed Reductive Cross-Coupling
铁催化还原交叉偶联
  • 批准号:
    2889793
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mechanistic Studies of palladium-catalysed C-C coupling reactions of carbon acids
钯催化碳酸C-C偶联反应的机理研究
  • 批准号:
    2787007
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigating Nickel-Catalysed C-P Cross-Coupling
研究镍催化的 C-P 交叉偶联
  • 批准号:
    NE/X00709X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Electrochemical Flow Processes for Ni-Catalysed Coupling Reactions
镍催化偶联反应的电化学流动过程
  • 批准号:
    2750460
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Diversification of DNA-encoded libraries by photoredox catalysed sp3-coupling
通过光氧化还原催化 sp3 偶联使 DNA 编码文库多样化
  • 批准号:
    2750462
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mechanistic Analysis and Development of Direct and Catalysed Coupling of Carboxylic Acids with Amines. Disentangling the Enigma
羧酸与胺的直接和催化偶联的机理分析和发展。
  • 批准号:
    2736069
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
New photocatalytic methods for the synthesis of complex heterocyclic scaffolds and base metal-catalysed cross-coupling
合成复杂杂环支架和贱金属催化交叉偶联的新光催化方法
  • 批准号:
    1970351
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
The Ironworks: a mechanistic foundry for iron-catalysed cross-coupling
The Ironworks:铁催化交叉耦合的机械铸造厂
  • 批准号:
    EP/K013505/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The Ironworks: a mechanistic foundry for iron-catalysed cross-coupling
The Ironworks:铁催化交叉耦合的机械铸造厂
  • 批准号:
    EP/K012258/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The Ironworks: a mechanistic foundry for iron-catalysed cross-coupling
The Ironworks:铁催化交叉耦合的机械铸造厂
  • 批准号:
    EP/K012290/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了