BRAIN EAGER: Multiscale dynamics and emergent properties of suprachiasmatic circuits in real time
BRAIN EAGER:实时视交叉上电路的多尺度动力学和涌现特性
基本信息
- 批准号:1450962
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is being made jointly by the Neural Systems Cluster in the Division of Integrative and Organismal Systems and the Instrument Development for Biological Research program (IDBR) in the Division of Biological Infrastructure. Understanding how the brain enables us to think, act, learn, and remember is challenging. Progress has been impeded by lack of a dynamic picture of interactions and properties that emerge when tiers of interconnected brain cells (neurons) are activated in response to experiences. These interactions cause changes in our behaviors and can affect subsequent activities of these neurons, a process called plasticity. This proposal will develop and use newly created, complementary technologies that will non-invasively control, measure, and analyze brain network dynamics and change in real time. Neuroscientists, engineers, and chemists from the University of Illinois at Urbana-Champaign will work together, each bringing cutting-edge methods to bear on this problem. Approaches include: 1) analyzing slices of brain tissue that maintain dynamic properties in a dish; 2) real-time, label-free imaging of neuron activity by novel optical methods; 3) activating and measuring neuronal activity with flexible, clear electrodes that interface directly with cells; and, 4) measuring and identifying patterns of brain chemicals released by experiences. These approaches will be applied together to better understand the dynamic geography of brain information processing and plasticity. Such comprehensive studies of brain dynamics in space and time have never been done. In the future, these technologies can be applied to many brain regions to advance understanding, broadening their impact. Students will be trained beyond usual disciplines, so that neuroscience, imaging technology, engineering of new materials for electrodes, and high-resolution analysis of neuron-to-neuron signals will be taught and used together. Outcomes will contribute to a workforce trained in new ways to tackle problems beyond current boundaries.What dynamic interactions and emergent properties of neuronal cells and circuits encode experience and generate changes in complex behaviors? Understanding the temporal and spatial dynamics of signal flow and evolution in multi-tiered neuronal circuits has been elusive. The proposed study will address this gap through transformational research that bridges excellence in fundamental neuroscience with innovative technologies in non-invasive imaging, materials development, and neurochemical analysis. Focus will be on processing of a surrogate sensory signal in the suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, that generates long-term behavioral change. This initiative will enable a pioneering program to develop and integrate novel non-invasive imaging of action potentials assessed by quantitative phase imaging of optical signals, stimulation/sensing by original, transparent, biocompatible electrodes, and chemical analyses of complex peptide-release signatures to understand the spatiotemporal dynamics of information flow in rat SCN circuits. These approaches will be applied together to better understand the dynamic geography of brain information processing and plasticity. Such comprehensive studies of brain dynamics in space and time have not been done previously. In the future, these technologies can be applied to many brain regions to advance understanding, broadening their impact. Students will be trained beyond usual disciplines, so that neuroscience, imaging technology, engineering of new materials for electrodes, and high-resolution analysis of neuron-to-neuron signals will be taught and used together. Outcomes will contribute to a workforce trained in new ways to work beyond current boundaries.
该奖项由综合和有机系统部门的神经系统集群和生物基础设施部门的生物研究仪器开发计划(IDBR)联合颁发。了解大脑如何使我们能够思考、行动、学习和记忆是具有挑战性的。由于缺乏对相互联系的脑细胞(神经元)层响应经验而被激活时出现的相互作用和特性的动态图景,进展受到阻碍。这些相互作用会导致我们的行为发生变化,并可能影响这些神经元的后续活动,这一过程称为可塑性。该提案将开发和使用新创建的互补技术,以非侵入性方式实时控制、测量和分析大脑网络动态和变化。来自伊利诺伊大学厄巴纳-香槟分校的神经科学家、工程师和化学家将共同努力,各自带来尖端方法来解决这个问题。方法包括:1)分析培养皿中保持动态特性的脑组织切片; 2)通过新颖的光学方法对神经元活动进行实时、无标记成像; 3) 使用直接与细胞连接的灵活、透明的电极激活和测量神经元活动; 4)测量和识别经历所释放的大脑化学物质的模式。这些方法将一起应用,以更好地理解大脑信息处理和可塑性的动态地理。从未对大脑在空间和时间上的动力学进行过如此全面的研究。未来,这些技术可以应用于许多大脑区域,以促进理解,扩大其影响。学生将接受超出常规学科的培训,神经科学、成像技术、电极新材料工程以及神经元到神经元信号的高分辨率分析将被一起教授和使用。结果将有助于培养一支接受新方法培训的劳动力,以解决当前界限之外的问题。神经元细胞和回路的哪些动态相互作用和突现特性编码经验并产生复杂行为的变化?了解多层神经元回路中信号流和进化的时间和空间动态一直是难以捉摸的。拟议的研究将通过变革性研究来解决这一差距,将基础神经科学的卓越性与非侵入性成像、材料开发和神经化学分析的创新技术联系起来。重点将放在视交叉上核(SCN)(大脑的昼夜节律起搏器)中替代感觉信号的处理上,该信号会产生长期的行为变化。这一举措将使一项开创性计划能够开发和整合新型非侵入性动作电位成像,通过光信号的定量相位成像、原始、透明、生物相容性电极的刺激/传感以及复杂肽释放特征的化学分析来评估,以了解大鼠视上核回路中信息流的时空动态。这些方法将一起应用,以更好地理解大脑信息处理和可塑性的动态地理。以前从未对大脑在空间和时间上的动力学进行过如此全面的研究。未来,这些技术可以应用于许多大脑区域,以促进理解,扩大其影响。学生将接受超出常规学科的培训,神经科学、成像技术、电极新材料工程以及神经元到神经元信号的高分辨率分析将被一起教授和使用。成果将有助于培养一支接受新工作方式培训的员工队伍,以超越当前的界限。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha Gillette其他文献
Martha Gillette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha Gillette', 18)}}的其他基金
NRT-UtB: Training the Next Generation of Researchers in Engineering and Deciphering of Miniature Brain Machinery
NRT-UtB:培训下一代微型脑机工程和破译研究人员
- 批准号:
1735252 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Regulation of SCN Glial Plasticity
SCN神经胶质可塑性的调节
- 批准号:
1354913 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Proteomics, Actin and Plasticity in Circadian Rhythms
蛋白质组学、肌动蛋白和昼夜节律的可塑性
- 批准号:
0818555 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Neuronal Substrates of Circadian Oscillation
昼夜节律振荡的神经元基质
- 批准号:
8419342 - 财政年份:1985
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: Multiscale multiplex spatial-omics: Illuminating molecular pathways and architecture in plant cells and tissues
EAGER:多尺度多重空间组学:阐明植物细胞和组织中的分子途径和结构
- 批准号:
2130365 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Accurate Estimation of Indoor Airborne Virus Transmission based on a Novel Multiscale Data-Driven Framework
EAGER:基于新型多尺度数据驱动框架准确估计室内空气传播病毒传播
- 批准号:
2134083 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Multiscale Modeling of Mechanically-Interlocked Macromolecules
EAGER:机械连锁大分子的多尺度建模
- 批准号:
1912329 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Modular design of multiscale models, with an application to the innate immune response to fungal respiratory pathogens
EAGER:多尺度模型的模块化设计,应用于对真菌呼吸道病原体的先天免疫反应
- 批准号:
1750183 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Myriad: a new architecture for parallel multiscale simulation on CPU/GPU
EAGER: Myriad:CPU/GPU 上并行多尺度模拟的新架构
- 批准号:
1743214 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
- 批准号:
1745300 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Advancing the Foundations of Systems Engineering through Multiscale Decision Theory
EAGER:通过多尺度决策理论推进系统工程的基础
- 批准号:
1755597 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Modeling Multiscale Control of Liver Regeneration
EAGER:肝脏再生的多尺度控制建模
- 批准号:
1747917 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Fluid-directed Multiscale Assembly of Conjugated Polymers
EAGER:共轭聚合物的流体引导多尺度组装
- 批准号:
1641854 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Innovative 3-D, multiscale flow-boiling wick
EAGER:创新的 3-D、多尺度流动沸腾芯
- 批准号:
1623572 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




