EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
基本信息
- 批准号:1745300
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ultimate goal of this EArly-concept Grant for Exploratory Research (EAGER) project is to develop a crossdomain multiscale network and interdependent critical infrastructure (ICI) generator that captures many features of real networks and incorporates an arbitrarily large or small degree of stochasticity. Starting from samples of known or hypothesized networks, the generator will synthesize ensembles of networks and ICIs that will preserve, on average, a diverse set of topological and physical design properties at multiple scales of its structure. These properties will include several measures of centrality, assortativity, path lengths, clustering, flows, required physical capacities, and modularity. This approach introduces an unbiased variability across the ensemble in many of these properties at multiple scales which creates a desired realism of the synthesized system. The models will include human factor components incorporated in both topological and physical designs. A toolbox of algorithms and heuristics for generating synthetic networks of infrastructures and ICIs will be developed, and generated benchmarks will be disseminated. Outcomes of this work will facilitate such tasks as simulation, policy testing and decision making for ICIs enabled by fundamental advancement in network generation algorithms. The toolbox will be designed using a modular approach that will allow it to evolve and to be applied in other domains. The interdisciplinary team of investigators comprising expertise in computer science, behavioral science, civil engineering, and network science and public health will ideally support the goal of realistic synthetic data generation. Perspectives and methodological approaches from network analysis, big data systems, machine learning, water networks, and organizational sciences will be brought to bear to develop a toolkit of methods that include a combination of network analytics, optimization, and statistical analysis techniques. The resulting products will include developed algorithms and generated synthetic datasets disseminated for a broad scientific community.
这个早期概念探索性研究资助(EAGER)项目的最终目标是开发一个跨域多尺度网络和相互依赖的关键基础设施(ICI)生成器,它可以捕获真实的网络的许多功能,并具有任意大小的随机性。从已知或假设网络的样本开始,生成器将合成网络和ICI的集合,这些集合平均而言将在其结构的多个尺度上保留一组不同的拓扑和物理设计属性。这些属性将包括中心性、非对称性、路径长度、集群、流量、所需物理容量和模块化的几个度量。这种方法在多个尺度下的许多这些属性中的整个集合中引入了无偏的可变性,这创建了合成系统的期望的真实性。这些模型将包括拓扑和物理设计中的人为因素组件。将开发用于生成基础设施和信息中心综合网络的算法和算法工具箱,并将传播生成的基准。这项工作的成果将促进这些任务,如模拟,政策测试和决策的ICI网络生成算法的根本进步。该工具箱将采用模块化方法设计,使其能够不断发展并应用于其他领域。由计算机科学、行为科学、土木工程、网络科学和公共卫生专业人员组成的跨学科研究团队将为现实合成数据生成的目标提供理想的支持。来自网络分析、大数据系统、机器学习、水网络和组织科学的观点和方法论方法将被用来开发一个方法工具包,其中包括网络分析、优化和统计分析技术的组合。由此产生的产品将包括为广大科学界传播的已开发算法和生成的合成数据集。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale planar graph generation
- DOI:10.1007/s41109-019-0142-3
- 发表时间:2018-02
- 期刊:
- 影响因子:2.2
- 作者:Varsha Chauhan;Alexander Gutfraind;Ilya Safro
- 通讯作者:Varsha Chauhan;Alexander Gutfraind;Ilya Safro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Safro其他文献
FAIRLEARN: Configurable and Interpretable Algorithmic Fairness
FAIRLEARN:可配置和可解释的算法公平性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ankit Kulshrestha;Ilya Safro - 通讯作者:
Ilya Safro
Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations
- DOI:
10.1007/s11004-021-09944-y - 发表时间:
2021-05-26 - 期刊:
- 影响因子:3.600
- 作者:
Hayato Ushijima-Mwesigwa;Jeffrey D. Hyman;Aric Hagberg;Ilya Safro;Satish Karra;Carl W. Gable;Matthew R. Sweeney;Gowri Srinivasan - 通讯作者:
Gowri Srinivasan
Randomized heuristics for exploiting Jacobian scarcity
利用雅可比稀缺性的随机启发式
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrew Lyons;Ilya Safro - 通讯作者:
Ilya Safro
A Measure of the Connection Strengths between Graph Vertices with Applications
图顶点间连接强度的测量及其应用
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jie Chen;Ilya Safro - 通讯作者:
Ilya Safro
Ilya Safro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Safro', 18)}}的其他基金
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
- 批准号:
2027864 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
- 批准号:
2035606 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
- 批准号:
2127776 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
- 批准号:
2122793 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Feedback-based Network Optimization for Smart Cities
EAGER:基于反馈的智慧城市网络优化
- 批准号:
1647361 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Fast and Scalable Multigrid Methods for Hypergraph Partitioning Problems
超图分区问题的快速且可扩展的多重网格方法
- 批准号:
1522751 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
2310638 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
2114098 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
1745375 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
1745385 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data Generation for Interdependent Natural Gas and Electrical Power Systems Based on Graph Theory and Machine Learning
EAGER:SSDIM:基于图论和机器学习的相互依赖的天然气和电力系统的模拟和综合数据生成
- 批准号:
1745451 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical Infrastructures
EAGER:SSDIM:相互依赖的通信和能源关键基础设施的模拟和综合数据
- 批准号:
1745829 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Data Simulation to Support Interdependence Modeling in Emergency Response and Multimodal Transportation Networks
EAGER:SSDIM:支持应急响应和多式联运网络中相互依赖建模的数据模拟
- 批准号:
1745353 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
- 批准号:
1745382 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




