EAGER: Compact Roadmaps for Planning Under Uncertainty
EAGER:不确定性下规划的紧凑路线图
基本信息
- 批准号:1452019
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Some form of uncertainty is embedded in almost all robotics applications. For example, the dynamics governing the robot or its environment cannot be modeled perfectly, or the sensors on board the robot provide noisy measurements. Hence, in many realistic scenarios, planning algorithms are faced with substantial uncertainty. Unfortunately, planning under uncertainty problems are known to be computationally challenging. This project aims to solve planning under uncertainty problems with a new algorithmic approach utilizing compact roadmaps, which aim to strike the best balance between computational effort and performance objectives. The approach is based on new techniques and advances in understanding probability measures in high-dimensional spaces. Expected results include: (i) a thorough theoretical analysis of compact data structures in the context of planning under uncertainty problems, which may lead to tight bounds on computational effort and performance; (ii) the development of algorithms with provable performance guarantees, and desirable computational properties. These results will advance our understanding of the computational impact of uncertainty in planning problems. Furthermore, they will lead to practical algorithms with potential for immediate impact in robotics and beyond. The experimental evaluation includes demonstration on self-driving cars. The results will be disseminated through publications in archival international robotics journals and international robotics conferences. The broader impacts also include the involvement of graduate- and undergraduate-level students in research activities and their training.
几乎所有机器人应用中都存在某种形式的不确定性。例如,控制机器人或其环境的动力学无法完美建模,或者机器人上的传感器提供噪声测量。因此,在许多现实场景中,规划算法面临着很大的不确定性。不幸的是,已知不确定性问题下的规划在计算上具有挑战性。该项目旨在通过利用紧凑路线图的新算法方法来解决不确定性问题下的规划,其目的是在计算量和性能目标之间取得最佳平衡。该方法基于理解高维空间中概率度量的新技术和进步。 预期结果包括:(i)在不确定性问题下的规划背景下对紧凑数据结构进行彻底的理论分析,这可能导致计算量和性能的严格限制; (ii) 开发具有可证明的性能保证和理想的计算特性的算法。这些结果将增进我们对规划问题中不确定性的计算影响的理解。此外,它们还将带来实用的算法,有可能对机器人技术及其他领域产生直接影响。实验评估包括自动驾驶汽车的演示。研究结果将通过国际机器人档案期刊和国际机器人会议上的出版物进行传播。更广泛的影响还包括研究生和本科生参与研究活动及其培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sertac Karaman其他文献
Sertac Karaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sertac Karaman', 18)}}的其他基金
RTML: Large: Co-design of Hardware and Algorithms for Energy-efficient Robot Learning
RTML:大型:节能机器人学习的硬件和算法协同设计
- 批准号:
1937501 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CPS: Medium: LEAR-CPS: Low-Energy computing for Autonomous mobile Robotic CPS via Co-Design of Algorithms and Integrated Circuits
CPS:中:LEAR-CPS:通过算法和集成电路的协同设计实现自主移动机器人 CPS 的低能耗计算
- 批准号:
1837212 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER: Autonomy-enabled Shared Vehicles for Mobility on Demand and Urban Logistics
EAGER:用于按需出行和城市物流的自主共享车辆
- 批准号:
1523401 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Design and Control of High-performance Provably-safe Autonomy-enabled Dynamic Transportation Networks
CPS:协同:协作研究:高性能、可证明安全、支持自主的动态运输网络的设计和控制
- 批准号:
1544413 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Practical Algorithms and Fundamental Limits for Complex Cyber-Physical Systems
职业:复杂网络物理系统的实用算法和基本限制
- 批准号:
1350685 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
NSF Early Career Workshop on Exploring New Frontiers in Cyber-Physical Systems
NSF 探索网络物理系统新领域的早期职业研讨会
- 批准号:
1445299 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
- 批准号:
EP/Y022157/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
- 批准号:
23K20871 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
PFI-TT: Compact, Coherent, Hydrophone Array Systems for Real-Time, Instantaneous, Wide-Area, Ocean Acoustic Monitoring from Wind Farms and Other Ocean Platforms
PFI-TT:紧凑、相干、水听器阵列系统,用于风电场和其他海洋平台的实时、瞬时、广域海洋声学监测
- 批准号:
2345791 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
- 批准号:
2337815 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
- 批准号:
2426360 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EFFICIENT COMPACT MODULAR THERMAL ENERGY STORAGE SYSTEM
高效紧凑的模块化热能存储系统
- 批准号:
10066626 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
EU-Funded
Auto-compact: AI-powered quality control system for automotive OEMs and Finished Vehicle Logistics (FVL) operators
Auto-compact:面向汽车原始设备制造商和整车物流 (FVL) 运营商的人工智能质量控制系统
- 批准号:
83003000 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Innovation Loans
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




