RTML: Large: Co-design of Hardware and Algorithms for Energy-efficient Robot Learning
RTML:大型:节能机器人学习的硬件和算法协同设计
基本信息
- 批准号:1937501
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Miniature low-energy autonomous robotic vehicles, ranging from insect-size flyers to palm- size satellites, hold the potential for tremendous impact in a diverse set of industries, including consumer electronics, high-bandwidth communications, search and rescue operations, and space exploration, just to name a few. Next-generation low-energy computing hardware that will enable these applications must be adaptable, i.e., recognizing new environments on the fly, learning their characteristic features in real time, and adapting its computing strategy to minimize the energy consumption required for computing task. This project will help realize vehicles that are able to improve the accuracy of their perception and decision making algorithms, simply by experimenting with obtaining a diverse set of viewpoints of the environment and utilizing the knowledge of its motion to ground and improve its observation via machine learning. The project also seeks to develop new graduate and undergraduate courses at MIT, it will enable outreach for high school students, involve women and underrepresented groups, thus helping train the future US workforce. This project will develop real-time robot learning algorithms and hardware focusing on three core areas. Firstly, the project will develop real-time continuous robot learning systems that improve performance of robot perception and decision making by rapid learning in new environments. Secondly, the project will develop real-time active robot learning systems to efficiently decide the balance between improving accuracy of perception and decision making algorithms and focusing on accomplishing the task at hand. Thirdly, the project will develop real-time adaptable robot learning systems for energy scalable perception and decision making, where the design allows for efficient accuracy-energy tradeoffs. The project will help develop new hardware and algorithms for real-time robot learning, by enabling new low-energy robotic systems. The project will also collaborate with a synergistic DARPA program for related hardware development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微型低能耗自主机器人车辆,从昆虫大小的飞行器到手掌大小的卫星,在各种行业中具有巨大影响的潜力,包括消费电子,高带宽通信,搜索和救援行动以及太空探索,仅举几例。支持这些应用的下一代低能耗计算硬件必须具有适应性,即,在运行中识别新的环境,真实的时间学习它们的特性特征,并调整其计算策略以最小化计算任务所需的能量消耗。该项目将有助于实现能够提高其感知和决策算法准确性的车辆,只需通过实验获得环境的各种观点,并利用其运动知识,通过机器学习改善其观察。该项目还寻求在麻省理工学院开发新的研究生和本科生课程,它将为高中生提供外展服务,让妇女和代表性不足的群体参与进来,从而帮助培训未来的美国劳动力。该项目将开发实时机器人学习算法和硬件,重点关注三个核心领域。首先,该项目将开发实时连续机器人学习系统,通过在新环境中的快速学习来提高机器人感知和决策的性能。其次,该项目将开发实时主动机器人学习系统,以有效地决定提高感知和决策算法的准确性与专注于完成手头任务之间的平衡。第三,该项目将开发实时自适应机器人学习系统,用于能量可扩展的感知和决策,其中设计允许有效的准确性-能量权衡。该项目将通过启用新的低能耗机器人系统,帮助开发用于实时机器人学习的新硬件和算法。该项目还将与DARPA的一个协同项目合作,进行相关的硬件开发。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty from Motion for DNN Monocular Depth Estimation
- DOI:10.1109/icra46639.2022.9812222
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Soumya Sudhakar;V. Sze;S. Karaman
- 通讯作者:Soumya Sudhakar;V. Sze;S. Karaman
Data Centers on Wheels: Emissions From Computing Onboard Autonomous Vehicles
- DOI:10.1109/mm.2022.3219803
- 发表时间:2023-01
- 期刊:
- 影响因子:3.6
- 作者:Soumya Sudhakar;V. Sze;S. Karaman
- 通讯作者:Soumya Sudhakar;V. Sze;S. Karaman
Efficient Computation of Map-scale Continuous Mutual Information on Chip in Real Time
芯片上地图尺度连续互信息的实时高效计算
- DOI:10.1109/iros51168.2021.9636603
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gupta, Keshav;Li, Peter Zhi;Karaman, Sertac;Sze, Vivienne
- 通讯作者:Sze, Vivienne
Memory-Efficient Gaussian Fitting for Depth Images in Real Time
实时深度图像的内存高效高斯拟合
- DOI:10.1109/icra46639.2022.9811682
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Peter Zhi;Karaman, Sertac;Sze, Vivienne
- 通讯作者:Sze, Vivienne
GMMap: Memory-Efficient Continuous Occupancy Map Using Gaussian Mixture Model
GMMap:使用高斯混合模型的内存高效连续占用图
- DOI:10.1109/tro.2023.3348305
- 发表时间:2024
- 期刊:
- 影响因子:7.8
- 作者:Li, Peter Zhi;Karaman, Sertac;Sze, Vivienne
- 通讯作者:Sze, Vivienne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sertac Karaman其他文献
Sertac Karaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sertac Karaman', 18)}}的其他基金
CPS: Medium: LEAR-CPS: Low-Energy computing for Autonomous mobile Robotic CPS via Co-Design of Algorithms and Integrated Circuits
CPS:中:LEAR-CPS:通过算法和集成电路的协同设计实现自主移动机器人 CPS 的低能耗计算
- 批准号:
1837212 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Autonomy-enabled Shared Vehicles for Mobility on Demand and Urban Logistics
EAGER:用于按需出行和城市物流的自主共享车辆
- 批准号:
1523401 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Design and Control of High-performance Provably-safe Autonomy-enabled Dynamic Transportation Networks
CPS:协同:协作研究:高性能、可证明安全、支持自主的动态运输网络的设计和控制
- 批准号:
1544413 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Practical Algorithms and Fundamental Limits for Complex Cyber-Physical Systems
职业:复杂网络物理系统的实用算法和基本限制
- 批准号:
1350685 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
EAGER: Compact Roadmaps for Planning Under Uncertainty
EAGER:不确定性下规划的紧凑路线图
- 批准号:
1452019 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Early Career Workshop on Exploring New Frontiers in Cyber-Physical Systems
NSF 探索网络物理系统新领域的早期职业研讨会
- 批准号:
1445299 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2404874 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2318807 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs
具有多个 PTO 的大容量波浪能转换器的系统级协同设计与控制
- 批准号:
EP/V040650/2 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Research Grant
Biodiversity co-benefits of large scale restoration in the Brazilian Amazon
巴西亚马逊地区大规模恢复生物多样性的协同效益
- 批准号:
2892586 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Studentship
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2348306 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2318808 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPAS-2020-00089 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2217003 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2217032 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant