CAREER: Next-generation inference of evolutionary paramaters from genome-wide sequence data
职业:从全基因组序列数据中推断进化参数的下一代
基本信息
- 批准号:1452622
- 负责人:
- 金额:$ 87.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop a suite of novel statistical and computational methods for inferring detailed evolutionary histories from whole-genomes of multiple individuals. While advances in sequencing technology have made DNA sequencing routine in most laboratories, methods to infer evolutionary histories from large sequencing datasets have had to make restrictive or biologically unrealistic assumptions to achieve computational tractability. This project will overcome the limitations of current methods by relaxing such restrictive assumptions and it will provide users with ways to assess the accuracy of estimates produced by the methods. This research will be integrated with an education plan that consists of multiple activities intended to introduce young women in high school to computer science and biology research: offering summer research experiences in the PI's lab, inviting high school students to collaborate with undergraduates in the PI's courses that teach programming skills to biology majors, and teaching programming to a variety of high school audiences.The objectives of this project are to develop methods that accurately infer (1) changes in population size over time, (2) rates of migration between populations over time, and (3) genomic targets of natural selection --- all from sequence data alone, taken from multiple individuals within a single species. The methods developed will model recombination, produce measures of uncertainty for reported estimates, allow for complex population histories, and identify regions of the genome under selection. The methods developed in this project will also be applied to test hypotheses regarding the evolutionary histories of a range of organisms. Software produced and data analyzed in publications resulting from the research will be made available to the public on the lab's data repository (http://ramachandran-data.brown.edu/) and through R packages deposited on the Comprehensive R Archive Network (http://cran.r-project.org/).
该项目的目标是开发一套新的统计和计算方法,用于从多个个体的全基因组推断详细的进化历史。虽然测序技术的进步使DNA测序在大多数实验室中成为常规,但从大型测序数据集推断进化历史的方法必须做出限制性或生物学上不切实际的假设才能实现计算可处理性。 这一项目将通过放宽这种限制性假设来克服目前方法的局限性,并将向用户提供评估这些方法所产生的估计数的准确性的方法。这项研究将与一项教育计划相结合,该计划包括旨在向高中女生介绍计算机科学和生物学研究的多种活动:在PI实验室提供夏季研究经验,邀请高中生与本科生合作学习PI为生物专业教授编程技能的课程,该项目的目标是开发准确推断(1)人口规模随时间的变化,(2)人口之间随时间的迁移率,以及(3)自然选择的基因组目标--所开发的方法将模拟重组,产生报告估计的不确定性措施,允许复杂的人口历史,并确定基因组区域的选择。在这个项目中开发的方法也将被应用于测试假设有关的一系列生物体的进化历史。研究产生的软件和出版物中分析的数据将在实验室的数据存储库(http://ramachandran-data.brown.edu/)上向公众提供,并通过存放在综合R档案网络(http://cran.r-project.org/)上的R软件包提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sohini Ramachandran其他文献
Genetic and molecular architecture of complex traits
复杂性状的遗传和分子结构
- DOI:
10.1016/j.cell.2024.01.023 - 发表时间:
2024-02-29 - 期刊:
- 影响因子:42.500
- 作者:
Tuuli Lappalainen;Yang I. Li;Sohini Ramachandran;Alexander Gusev - 通讯作者:
Alexander Gusev
Evaluating signatures of sex-specific processes in the human genome
评估人类基因组中性特异性过程的特征
- DOI:
10.1038/ng0109-8 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:29.000
- 作者:
Carlos D Bustamante;Sohini Ramachandran - 通讯作者:
Sohini Ramachandran
Hierarchical clustering of gene-level association statistics reveals shared and differential genetic architecture among traits in the UK Biobank
基因级关联统计数据的层次聚类揭示了英国生物银行性状之间的共享和差异遗传结构
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Melissa R. McGuirl;Samuel Pattillo Smith;Bjorn Sandstede;Sohini Ramachandran - 通讯作者:
Sohini Ramachandran
Statistics Provides Evidence of Pervasive Epistasis in Complex
统计数据提供了复杂性中普遍存在的上位性证据
- DOI:
10.1101/2020.11.10.376897 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gregory Darnell;S. P. Smith;Dana Udwin;Sohini Ramachandran;Lorin;Crawford - 通讯作者:
Crawford
a serial founder effect originating in Africa Support from the relationship of genetic and geographic distance in human populations for
起源于非洲的系列创始人效应来自人群遗传和地理距离关系的支持
- DOI:
10.1007/s10592-014-0592-1 - 发表时间:
2005 - 期刊:
- 影响因子:2.2
- 作者:
Sohini Ramachandran;Omkar Deshpande;C. Roseman;N. Rosenberg;M. Feldman;L. Cavalli - 通讯作者:
L. Cavalli
Sohini Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
- 批准号:
2422750 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Standard Grant
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
- 批准号:
2338365 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant
CAREER: Engineering next-generation adrenal gland organoids
职业:设计下一代肾上腺类器官
- 批准号:
2335133 - 财政年份:2024
- 资助金额:
$ 87.61万 - 项目类别:
Continuing Grant