CAREER: Leveraging temporal streams for micro-architectural innovation in data center servers
职业:利用时间流进行数据中心服务器的微架构创新
基本信息
- 批准号:1452904
- 负责人:
- 金额:$ 39.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the global user base for online services continues to expand and new services and features are rapidly developed, data centers from which these online cloud services operate experience constant pressure to achieve higher performance and improve their quality of service. However, supporting the adoption of cloud services in all aspects of people?s daily lives requires expanding data centers to an extreme scale, with hundreds of millions of servers and ecologically unthinkable energy bills. This research develops technologies to improve the performance and efficiency of future data centers, targeting higher performance and lower energy costs from each deployed server. As such, it directly contributes to sustainable growth of data centers and online services, while at the same time training world-class experts specialized in tackling the challenges facing future data centers and clouds.This research leverages a recently-codified phenomenon called "temporal streams" to solve a number of long-standing micro-architectural performance bottlenecks facing server systems in the cloud. Many of the performance enhancing techniques developed over the course of the past several decades for the desktop, mobile, and super-computer domains provide limited benefits to server systems, because the size and complexity of a typical cloud workload requires significantly greater meta-data storage capacity than currently available to these techniques. This work re-architects the meta-data storage of speculative structures, leveraging temporal streams to expand their effective capacity. Specifically, this work targets instruction prefetchers, branch predictors, and hardware memorization as case studies to demonstrate the ability of temporal streaming to provide sufficient meta-data storage for these mechanisms when executing cloud workloads.
随着全球在线服务用户群的不断扩大以及新服务和功能的快速开发,运营这些在线云服务的数据中心不断面临着实现更高性能和提高服务质量的压力。然而,支持人们在各个方面采用云服务?的日常生活需要将数据中心扩展到一个极端的规模,数以亿计的服务器和生态上无法想象的能源账单。这项研究开发了技术,以提高未来数据中心的性能和效率,目标是提高每个部署的服务器的性能和降低能源成本。因此,它直接有助于数据中心和在线服务的可持续增长,同时培养世界一流的专家,专门应对未来数据中心和云所面临的挑战。这项研究利用最近编纂的称为“时间流”的现象来解决一些长期存在的微观问题,云服务器系统面临的架构性能瓶颈。在云计算过程中开发的许多性能增强技术,过去几十年来,桌面、移动的和超级计算机领域为服务器系统提供了有限的好处,因为典型云工作负载的大小和复杂性需要比这些技术当前可用的元数据存储容量大得多的元数据存储容量。这项工作重新构建了推测性结构的元数据存储,利用时间流来扩展其有效容量。具体而言,该工作将指令预取器、分支预测器和硬件存储器作为案例研究的目标,以证明在执行云工作负荷时临时流传输为这些机制提供足够的元数据存储的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ferdman其他文献
Michael Ferdman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ferdman', 18)}}的其他基金
SHF: Small: Massively Parallel Server Processors
SHF:小型:大规模并行服务器处理器
- 批准号:
2153297 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
FoMR: IPC Improvement through Hardware Memorization
FoMR:通过硬件记忆改进 IPC
- 批准号:
1912517 - 财政年份:2019
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Student Travel - IEEE International Symposium on Workload Characterization (IISWC)
学生旅行 - IEEE 工作负载表征国际研讨会 (IISWC)
- 批准号:
1737875 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Harnessing the Power of High-Bandwidth Memory via Provably Efficient Parallel Algorithms
SPX:协作研究:通过可证明高效的并行算法利用高带宽内存的力量
- 批准号:
1725543 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
XPS:FULL:DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:FULL:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533739 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Preliminary Study to Demonstrate the Performance and Power Advantages of FPGAs over GPUs for Deep Learning in Computer Vision
初步研究展示 FPGA 相对于 GPU 在计算机视觉深度学习方面的性能和功耗优势
- 批准号:
1453460 - 财政年份:2014
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
II-New: Secure and Efficient Cloud Infrastructure and Accessibility Services
II-新:安全高效的云基础设施和无障碍服务
- 批准号:
1405641 - 财政年份:2014
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Continuing Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Research Grant
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
- 批准号:
MR/Z503514/1 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Research Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Continuing Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
- 批准号:
2338450 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Continuing Grant














{{item.name}}会员




