Preliminary Study to Demonstrate the Performance and Power Advantages of FPGAs over GPUs for Deep Learning in Computer Vision

初步研究展示 FPGA 相对于 GPU 在计算机视觉深度学习方面的性能和功耗优势

基本信息

  • 批准号:
    1453460
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

We stand on the verge of dramatic advances in deep learning algorithms, which will soon enable widespread adoption of computer-vision-based object recognition in scientific inquiry, commercial applications, and everyday life. However, practical large-scale applications in this area are currently limited by the computational capabilities of conventional computer systems. In recent years, technological improvement in computer processors (CPUs) has considerably slowed. This has led to an increase in interest in using Graphics Processing Units (GPUs) to accelerate deep learning computer vision algorithms. Although GPUs can perform these tasks faster than CPUs, they suffer from inflexibility and very high power cost. An alternative technology called the Field-Programmable Gate Array (FPGA) is very attractive for problems in this domain thanks to its flexibility and power efficiency. However, FPGAs have been underutilized in this area, in large part due to unfamiliarity and misconceptions. The goal of this project is to demonstrate the power and performance advantages of FPGAs over GPUs for deep-learning-based computer vision problems via hard experimental evidence. The PIs will disseminate their findings to the research community at large with the goal of encouraging the use of FPGAs in ground-breaking work tackling the grand challenges of deep learning and computer vision.This project consists of a three-stage research plan. First, the PIs will prepare and validate a state-of-the-art image detection application based on convolutional neural networks. This will utilize the popular Caffe library, which allows convolutional networks to be evaluated on CPU and GPU. Second, the PIs will perform a detailed characterization and profiling of the performance of this application on GPU, seeking to understand the performance characteristics and their underlying causes. Third, the PIs will implement portions of the algorithm on an FPGA, and perform an in-depth analysis to find and explain the advantages and disadvantages offered by the platform. The PIs anticipate demonstrating that the slowest portion of the algorithm on the GPU will achieve significant speedup on the FPGA, arising from the efficient support of irregular fine-grain parallelism. Meanwhile, the fastest portion of the algorithm on the GPU is anticipated to run with comparable performance on the FPGA, but at dramatically lower power consumption.This project will integrate research with graduate and undergraduate education. PhD students will be exposed to GPU optimization and application-specific high-performance FPGA design. Masters and undergraduate students will gain valuable skills assisting the project through the Masters Advanced Project in Computer Science and the Undergraduate Senior Design Project in Electrical and Computer Engineering. The results of the study will be published at prominent venues to ensure maximum exposure for the relevant research communities.
我们站在深度学习算法取得巨大进步的边缘,这将很快使基于计算机视觉的物体识别在科学研究、商业应用和日常生活中得到广泛采用。然而,在这一领域的实际大规模应用目前受到传统计算机系统的计算能力的限制。近年来,计算机处理器(CPU)的技术进步已经大大放缓。这导致人们对使用图形处理单元(GPU)来加速深度学习计算机视觉算法的兴趣增加。虽然GPU可以比CPU更快地执行这些任务,但它们具有可扩展性和非常高的功耗。由于其灵活性和功耗效率,一种称为现场可编程门阵列(FPGA)的替代技术对于该领域的问题非常有吸引力。然而,FPGA在这一领域的应用并不充分,这在很大程度上是由于不熟悉和误解。该项目的目标是通过确凿的实验证据来证明FPGA相对于GPU在基于深度学习的计算机视觉问题上的功能和性能优势。PI将向整个研究社区传播他们的研究结果,目的是鼓励在应对深度学习和计算机视觉重大挑战的开创性工作中使用FPGA。该项目包括三个阶段的研究计划。首先,PI将准备和验证基于卷积神经网络的最先进的图像检测应用程序。这将利用流行的Caffe库,该库允许在CPU和GPU上评估卷积网络。其次,PI将对GPU上的应用程序的性能进行详细的表征和分析,以了解性能特征及其根本原因。第三,PI将在FPGA上实现部分算法,并进行深入分析,以发现和解释平台提供的优点和缺点。PI预计将证明GPU上算法最慢的部分将在FPGA上实现显著的加速,这是由于对不规则细粒度并行的有效支持。与此同时,该算法在GPU上的最快部分预计将在FPGA上运行与之相当的性能,但功耗显著降低。该项目将把研究与研究生和本科生教育结合起来。博士生将接触到GPU优化和特定于应用的高性能FPGA设计。 硕士和本科生将获得宝贵的技能,通过计算机科学硕士高级项目和电气和计算机工程本科高级设计项目协助项目。 研究结果将在重要地点公布,以确保相关研究界获得最大程度的曝光。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ferdman其他文献

Michael Ferdman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ferdman', 18)}}的其他基金

SHF: Small: Massively Parallel Server Processors
SHF:小型:大规模并行服务器处理器
  • 批准号:
    2153297
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
FoMR: IPC Improvement through Hardware Memorization
FoMR:通过硬件记忆改进 IPC
  • 批准号:
    1912517
  • 财政年份:
    2019
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Student Travel - IEEE International Symposium on Workload Characterization (IISWC)
学生旅行 - IEEE 工作负载表征国际研讨会 (IISWC)
  • 批准号:
    1737875
  • 财政年份:
    2017
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Harnessing the Power of High-Bandwidth Memory via Provably Efficient Parallel Algorithms
SPX:协作研究:通过可证明高效的并行算法利用高带宽内存的力量
  • 批准号:
    1725543
  • 财政年份:
    2017
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
XPS:FULL:DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:FULL:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
  • 批准号:
    1533739
  • 财政年份:
    2015
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
CAREER: Leveraging temporal streams for micro-architectural innovation in data center servers
职业:利用时间流进行数据中心服务器的微架构创新
  • 批准号:
    1452904
  • 财政年份:
    2015
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
II-New: Secure and Efficient Cloud Infrastructure and Accessibility Services
II-新:安全高效的云基础设施和无障碍服务
  • 批准号:
    1405641
  • 财政年份:
    2014
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

A Phase 2, randomized, double-blind, 4-arm, multicenter study to demonstrate the efficacy and safety of topical dosage formulations of a prescription drug product for actinic keratosis
一项 2 期、随机、双盲、4 组、多中心研究,旨在证明处方药局部剂量制剂治疗光化性角化病的有效性和安全性
  • 批准号:
    10820810
  • 财政年份:
    2023
  • 资助金额:
    $ 9.5万
  • 项目类别:
Optimized clinical dermal Open Flow Microperfusion study design to demonstrate bioequivalence based on cutaneous pharmacokinetics
优化临床皮肤开放式微灌注研究设计,以证明基于皮肤药代动力学的生物等效性
  • 批准号:
    10598961
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
Optimized clinical dermal Open Flow Microperfusion study design to demonstrate bioequivalence based on cutaneous pharmacokinetics
优化临床皮肤开放式微灌注研究设计,以证明基于皮肤药代动力学的生物等效性
  • 批准号:
    10703485
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
Study for electronic states of water in high-concentration aqueous electrolytes solutions to demonstrate potential window expansion of mechanism of aqueous electrolyte
研究高浓度电解质水溶液中水的电子态,以证明电解质水溶液的潜在窗口扩展机制
  • 批准号:
    21K05013
  • 财政年份:
    2021
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploratory study to demonstrate the usefulness of 5-aminolevulinic acid for biliary malignancy
探索性研究证明 5-氨基乙酰丙酸治疗胆道恶性肿瘤的有效性
  • 批准号:
    20K09071
  • 财政年份:
    2020
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pivotal Study to Demonstrate the Effectiveness of Estradiol Administered in Feed to American Eels (Anguilla rostrata) for Increased Rate of Weight Gain, Protocol No. NE-002
证明在美国鳗鱼(Anguilla rostrata)饲料中添加雌二醇可提高体重增加率的有效性的关键研究,方案编号 NE-002
  • 批准号:
    9750312
  • 财政年份:
    2018
  • 资助金额:
    $ 9.5万
  • 项目类别:
Smart Water: Feasibility study to demonstrate the Water Reuse Network (WReN) Decision Support System in Singapore
智能水务:论证新加坡水回用网络 (WReN) 决策支持系统的可行性研究
  • 批准号:
    132288
  • 财政年份:
    2016
  • 资助金额:
    $ 9.5万
  • 项目类别:
    EU-Funded
EAGER: Preliminary Study to Demonstrate Feasibility and Advantages of Massively Parallel Server Processors
EAGER:初步研究证明大规模并行服务器处理器的可行性和优势
  • 批准号:
    1654003
  • 财政年份:
    2016
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
A study to demonstrate new support methods in family social work.
一项展示家庭社会工作新支持方法的研究。
  • 批准号:
    26380769
  • 财政年份:
    2014
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: EAGER: A Proof of Concept Study to Demonstrate Tunable Thermal Rectification in Liquids
合作研究:EAGER:演示液体中可调谐热整流的概念验证研究
  • 批准号:
    1246536
  • 财政年份:
    2012
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了