CAREER: Machine Learning through the Lens of Economics (And Vice Versa)

职业:通过经济学视角进行机器学习(反之亦然)

基本信息

项目摘要

Machine Learning (ML) is the study of leveraging data and computational resources to obtain prediction and decision-making algorithms that function well in the presence of uncertainty. The techniques employed to design and study ML algorithms typically involve concepts and tools from probability, statistics, and optimization; the language of economics, on the other hand, is conspicuously absent. It is rare to encounter terms such as marginal price, utility, equilibrium, risk aversion, and such, in the ML research literature. This gap is significant and belies the reality that the broad interest in Machine Learning, and its sudden growth spurt as a research field, can be ascribed to its potential for generating economic value across many segments of society. This NSF CAREER projectadvances an already-emerging relationship between Machine Learning and the fields of microeconomic theory and finance. This will begin with the development of mathematical tools that enable a semantic correspondence between learning-theoretic objects and economic abstractions. For example, the project shows that many algorithms can be viewed as implementing a market economy, where learning parameters are associated with prices, parameter updates are viewed as transactions, and under certain conditions learned hypotheses can be extracted as market-clearing price equilibria. In addition to developing this link, the project research raises a number of intriguing questions and explores several surprising and novel applications with benefits to computer science more broadly. Among several such applications stemming from the new theoretical connections are:1. Developing new models for distributed computing for learning and estimation tasks: The economic lens gives new insights into a robust and effective model for decentralization of data-focused tasks.2. Designing new techniques for crowdsourcing and labor decentralization via collaborative mechanisms involving financial payment schemes: This builds off of the success of platforms like Amazon's Mechanical Turk as well as the Netflix Prize and the prediction challenge company Kaggle.3. Developing a market-oriented model for data brokerage and financially-efficient learning: As information is increasingly traded in market environments, we aim to answer questions such as "what is the marginal value of a unit of data?"The project will also develop the Michigan Prediction Team, a data-science focused program for formulating and solving prediction and learning challenges that develop from across the University of Michigan as well as externally. The group primarily targets undergraduates with graduate student mentors, and Team has a strong interdisciplinary focus.
机器学习(ML)是利用数据和计算资源来获得预测和决策算法的研究,这些算法在存在不确定性的情况下运行良好。用于设计和研究ML算法的技术通常涉及概率、统计和优化的概念和工具;另一方面,经济学的语言明显缺乏。在ML研究文献中,很少遇到边际价格、效用、均衡、风险规避等术语。这一差距很大,掩盖了这样一个现实,即对机器学习的广泛兴趣及其作为一个研究领域的突然增长,可以归因于它在社会许多领域产生经济价值的潜力。这个NSF CAREER项目推进了机器学习与微观经济理论和金融领域之间已经出现的关系。这将开始与数学工具的发展,使学习理论对象和经济抽象之间的语义对应。例如,该项目表明,许多算法可以被视为实现市场经济,其中学习参数与价格相关联,参数更新被视为交易,并且在某些条件下,学习的假设可以被提取为市场出清价格均衡。除了开发这种联系之外,该项目的研究还提出了一些有趣的问题,并探索了几个令人惊讶和新颖的应用,这些应用对计算机科学有更广泛的好处。在几个这样的应用程序源于新的理论联系是:1。为学习和估计任务开发分布式计算的新模型:经济透镜为数据集中任务的分散化提供了一个强大而有效的模型。通过涉及金融支付计划的协作机制,设计用于众包和劳动力分散的新技术:这建立在亚马逊的Mechanical Turk以及Netflix Prize和预测挑战公司Kaggle等平台的成功基础上。开发面向市场的数据经纪和经济高效学习模型:随着信息在市场环境中的交易越来越多,我们的目标是回答诸如“一个数据单元的边际价值是多少?该项目还将开发密歇根预测团队,这是一个以数据科学为重点的项目,用于制定和解决来自密歇根大学内外的预测和学习挑战。该小组主要针对本科生与研究生导师,团队有很强的跨学科的重点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Abernethy其他文献

Lexicographic Optimization: Algorithms and Stability
词典优化:算法与稳定性

Jacob Abernethy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Abernethy', 18)}}的其他基金

RI: Small: Training Modularized Learning Systems
RI:小型:训练模块化学习系统
  • 批准号:
    1910077
  • 财政年份:
    2019
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning through the Lens of Economics (And Vice Versa)
职业:通过经济学视角进行机器学习(反之亦然)
  • 批准号:
    1833287
  • 财政年份:
    2017
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 50.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了