CAREER: Advanced Knowledge Extraction of Affective Behaviors During Natural Human Interaction

职业:人类自然互动过程中情感行为的高级知识提取

基本信息

  • 批准号:
    1453781
  • 负责人:
  • 金额:
    $ 49.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Identifying and characterizing emotional behaviors are challenging but very important research topics for enriched speech-derived analytics and human-computer interaction. This CAREER project aims to create novel algorithms to recognize spontaneous affective behaviors from speech that capture the underlying externalization process of emotions and generalize to recordings of human interactions collected under real-world conditions. The lack of generalization of current speech emotion algorithms to recognize expressive behaviors during natural human interaction is the key barrier to deploying affective-aware technology in real-life applications. Under a theoretical framework grounded in the nonuniform externalization of expressive behaviors, the project brings transformative solutions to address this problem. The proposed models and algorithms promise insights to explore and extend theories in linguistic
 and paralinguistic human behaviors. Several new scientific avenues can emerge that serve as truly innovative advancements that will impact applications in security and defense, next generation of advanced user interfaces, health behavior informatics, and education. The role of human centered technologies, especially contextualized in applications of direct societal relevance, can inspire young 
scholars into computing and engineering: from creating robust technologies for sensing, to 
actually incorporating such information as a part of advanced analytics and enhanced user experiences. As a Hispanic faculty, the PI serves as a mentor and role model for high school, undergraduate 
and graduate students involved in the Minority Scholars Symposium, Diversity Scholarship Program and Graduate Student Mentoring Program at the University of Texas at Dallas. Through lab open houses, demonstrations, and active online and social media presence, the PI is reaching out to non-traditional students, as well 
as the broader, non-technical audience interested in human behavior science.The project evaluates 
the powerful, scalable and appealing concept of using neutral reference models to contrast deviations in speech characteristics associated with emotions. The study proposes flexible, integrative and discriminative frameworks that capture the underlying encoding process of expressive behaviors including of emotion salient regions in the speech stream, intrinsic reliability of features,
 and dynamic evolution of emotions. The study considers binary and rank-based classifiers to recognize and rank-order specific expressive behaviors. The project presents speaker and lexical compensation schemes, and model adaptation strategies to increase the robustness of the proposed models. All these theoretical and algorithmic advances are carefully evaluated with naturalistic data, in which emotional content will be annotated 
with a novel crowdsourcing scheme that tracks in real time the performance of the evaluators.
识别和表征情绪行为是一个具有挑战性但非常重要的研究课题,用于丰富的语音衍生分析和人机交互。这个CAREER项目旨在创建新的算法来识别来自语音的自发情感行为,这些语音捕获了情感的潜在外部化过程,并推广到在真实世界条件下收集的人类互动记录。目前的语音情感算法缺乏泛化能力来识别自然人类交互过程中的表达行为,这是将情感感知技术应用于现实生活中的关键障碍。在基于表达行为的非统一外部化的理论框架下,该项目为解决这一问题带来了变革性的解决方案。所提出的模型和算法承诺的见解,探索和扩展理论的语言#8232;和非语言人类行为。一些新的科学途径可以作为真正的创新进步出现,这些进步将影响安全和国防,下一代高级用户界面,健康行为信息学和教育领域的应用。以人为本的技术的作用,特别是在直接社会相关性的应用中,可以激励年轻的学者进入计算和工程领域:从创建强大的传感技术,到实际将这些信息作为高级分析和增强用户体验的一部分。作为一个西班牙裔教师,PI作为高中,本科
和研究生参与少数民族学者研讨会,多样性奖学金计划和研究生导师计划在得克萨斯大学达拉斯。通过实验室开放日、演示以及活跃的在线和社交媒体活动,PI正在接触非传统的学生,&以及对人类行为科学感兴趣的更广泛的非技术受众&。使用中性参考模型来对比与情绪相关的语音特征偏差的强大、可扩展和吸引人的概念。该研究提出了灵活的,综合的和有区别的框架,捕捉表达行为的底层编码过程,包括语音流中的情感突出区域,特征的内在可靠性,以及情感的动态演变。该研究认为,二进制和排名为基础的分类识别和排名的具体表达行为。该项目提出了扬声器和词汇补偿计划,模型自适应策略,以增加所提出的模型的鲁棒性。所有这些理论和算法的进步都是用自然主义数据仔细评估的,其中情感内容将用一种新颖的众包方案进行注释,该方案可以真实的时间跟踪评估者的表现。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preference-Learning with Qualitative Agreement for Sentence Level Emotional Annotations
句子级情感注释的定性一致性偏好学习
  • DOI:
    10.21437/interspeech.2018-2478
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parthasarathy, Srinivas;Busso, Carlos
  • 通讯作者:
    Busso, Carlos
Retrieving Speech Samples with Similar Emotional Content Using a Triplet Loss Function
Audiovisual Speech Activity Detection with Advanced Long Short-Term Memory
  • DOI:
    10.21437/interspeech.2018-2490
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fei Tao;C. Busso
  • 通讯作者:
    Fei Tao;C. Busso
Domain Adversarial for Acoustic Emotion Recognition
Generative Approach Using Soft-Labels to Learn Uncertainty in Predicting Emotional Attributes
使用软标签的生成方法来学习预测情感属性的不确定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Busso其他文献

Enhanced Facial Landmarks Detection for Patients with Repaired Cleft Lip and Palate
增强唇裂和腭裂修复患者的面部标志检测
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Rosero;Ali N. Salman;Berrak Sisman;R. Hallac;Carlos Busso
  • 通讯作者:
    Carlos Busso
SPEECH EMOTION RECOGNITION IN REAL STATIC AND DYNAMIC HUMAN-ROBOT INTERACTION SCENARIOS
真实静态和动态人机交互场景中的语音情感识别
  • DOI:
    10.1016/j.csl.2024.101666
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicolás Grágeda;Carlos Busso;Eduardo Alvarado;Ricardo García;R. Mahú;F. Huenupán;N. B. Yoma
  • 通讯作者:
    N. B. Yoma
Mixed Emotion Modelling for Emotional Voice Conversion
用于情感语音转换的混合情感建模
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Zhou;Berrak Sisman;Carlos Busso;Haizhou Li
  • 通讯作者:
    Haizhou Li
Richness and Density of Birds in Timber Nothofagus pumilio Forests and their Unproductive Associated Environments
  • DOI:
    10.1007/s10531-004-1665-0
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    María Vanessa Lencinas;Guillermo Martínez Pastur;Marlin Medina;Carlos Busso
  • 通讯作者:
    Carlos Busso
Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline
迈向自然语音转换:具有自动处理管道的 NaturalVoices 数据集
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali N. Salman;Zongyang Du;Shreeram Suresh Chandra;Ismail Rasim Ulgen;Carlos Busso;Berrak Sisman
  • 通讯作者:
    Berrak Sisman

Carlos Busso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Busso', 18)}}的其他基金

CCRI: Medium: MSP-Podcast: Creating The Largest Speech Emotional Database By Leveraging Existing Naturalistic Recordings
CCRI:媒介:MSP-Podcast:利用现有的自然主义录音创建最大的语音情感数据库
  • 批准号:
    2016719
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
CRI: CI-P: Creating the Largest Speech Emotional Database by Leveraging Existing Naturalistic Recordings
CRI:CI-P:利用现有的自然录音创建最大的语音情感数据库
  • 批准号:
    1823166
  • 财政年份:
    2018
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
RI: Small: Integrative, Semantic-Aware, Speech-Driven Models for Believable Conversational Agents with Meaningful Behaviors
RI:小型:集成的、语义感知的、语音驱动的模型,用于具有有意义行为的可信会话代理
  • 批准号:
    1718944
  • 财政年份:
    2017
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
FG 2015 Doctoral Consortium: Travel Support for Graduate Students
FG 2015 博士联盟:研究生旅行支持
  • 批准号:
    1540944
  • 财政年份:
    2015
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
EAGER: Exploring the Use of Synthetic Speech as Reference Model to Detect Salient Emotional Segments in Speech
EAGER:探索使用合成语音作为参考模型来检测语音中的显着情感片段
  • 批准号:
    1329659
  • 财政年份:
    2013
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
WORKSHOP: Doctoral Consortium for the International Conference on Multimodal Interaction (ICMI 2013)
研讨会:多模式交互国际会议博士联盟 (ICMI 2013)
  • 批准号:
    1346655
  • 财政年份:
    2013
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Exploring Audiovisual Emotion Perception using Data-Driven Computational Modeling
RI:小型:协作研究:使用数据驱动的计算模型探索视听情感感知
  • 批准号:
    1217104
  • 财政年份:
    2012
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Continuing Grant
Workshop: Doctoral Consortium at the 14th International Conference on Multimodal Interaction
研讨会:第14届多模态交互国际会议博士联盟
  • 批准号:
    1249319
  • 财政年份:
    2012
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Continuing Grant
IUCRC Phase III + Florida Atlantic University: Center for Advanced Knowledge Enablement
IUCRC 第三阶段佛罗里达大西洋大学:高级知识支持中心
  • 批准号:
    2231200
  • 财政年份:
    2023
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Continuing Grant
Development of advanced machine learning methods in cooperation with prior knowledge as simulators
与模拟器等先验知识合作开发先进的机器学习方法
  • 批准号:
    20K19869
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Apply statistical analysis and knowledge graph to effectively utilize all time series data for movements that require advanced skill
应用统计分析和知识图谱,有效利用所有时间序列数据进行需要高级技能的运动
  • 批准号:
    22K11491
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
mechanism of knowledge creation in advanced learning process
高级学习过程中的知识创造机制
  • 批准号:
    20J00219
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Genetic modificatoin of host crops to endow novel resistant traits against root parasitic weeds based on advanced biochemical knowledge
基于先进的生化知识对宿主作物进行基因改造,赋予其针对根部寄生杂草的新抗性性状
  • 批准号:
    20KK0131
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of Teaching Materials for Advanced Japanese History in Senior High School Based on Knowledge of Recent Maritime Asian Studies
基于近年海洋亚洲研究的高中日本高级史教材的开发
  • 批准号:
    20K22220
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Advanced Technological Education Coordination Network for Knowledge Sharing in Robotics/Automation and Cybersecurity
机器人/自动化和网络安全知识共享先进技术教育协调网络
  • 批准号:
    2000867
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
Advanced Brand Safety: Empower news publishers to unblock £millions of lost ad revenue from pages mentioning COVID, using an innovative hybrid of knowledge graph and sentiment analysis.
先进的品牌安全:使用知识图谱和情绪分析的创新组合,使新闻出版商能够消除提及新冠肺炎的页面造成的数百万英镑的广告收入损失。
  • 批准号:
    84500
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Collaborative R&D
Register knowledge in advanced learner language (C04)
用高级学习者语言注册知识(C04)
  • 批准号:
    432766631
  • 财政年份:
    2020
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了