CRI: CI-P: Creating the Largest Speech Emotional Database by Leveraging Existing Naturalistic Recordings

CRI:CI-P:利用现有的自然录音创建最大的语音情感数据库

基本信息

  • 批准号:
    1823166
  • 负责人:
  • 金额:
    $ 9.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

This community infrastructure planning project aims to consider the needs from other researchers in the design of the largest publicly available naturalistic speech emotional database, broadening the impact of the corpus across speech processing areas. The project includes a workshop with researchers with relevant but diverse expertise to introduce the current protocol for data collection, and requests their recommendations for improvements. The proposed activity will improve the protocol to address the needs from the community. Affective computing is an important research area aiming to understand, analyze, recognize, and synthesize human emotions. Providing emotion capabilities to current speech-based interfaces can facilitate transformative applications in areas related to Human Computer Interaction (HCI), healthcare, security and defense, education and entertainment. The research infrastructure envisioned in this project will open new opportunities that we cannot address with current speech emotional databases. In the area of affective computing, the proposed corpus will provide suitable training sets to explore learning algorithms that are powerful, but require large amount of labeled data. It is expected that the size, naturalness, and speaker and recording variety in the proposed corpus will allow the community to create robust models that generalize across applications. Improvements on speech emotion recognition systems will facilitate the transition of these algorithms into practical applications, providing unique societal benefits. The proposed infrastructure will also play a key role on other speech processing tasks. For the first time, the community will have the infrastructure to address speaker verification and automatic speech recognition solutions against variations due to emotion.The proposed infrastructure relies on a novel approach based on emotion retrieval along with crowdsource-based annotations to effectively build a large, naturalistic emotional database with balanced emotional content, reduced cost and reduced manual labor. The database considers podcast recordings that are available in audio-sharing websites. Although the approach of building affective databases using media content has been previously explored, the contribution of this study is the use of machine learning algorithms to retrieve audio clips with balanced emotional content, providing natural stimuli with wider spectrum of emotions. The proposed approach relies on automatic algorithms to post-process podcasts and a cost effective annotation process, which make it possible to build large scale speech emotional databases. This approach provides natural emotional renditions that are difficult to obtain with alternative data collection protocols. This project involves the research community from the design of the corpus, which is the key goal in this community infrastructure planning project. The community also play a key role in the selection of target sentences to be emotionally annotated, with novel grand challenges where the goal is to recognize and retrieve target emotional behaviors in unconstrained, unlabeled recordings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该社区基础设施计划项目旨在考虑其他研究人员在设计最大的公开自然主义语音情感数据库的设计中的需求,从而扩大了语料库在语音处理领域的影响。该项目包括与具有相关但多样化专业知识的研究人员的研讨会,以介绍当前的数据收集协议,并要求他们的建议进行改进。拟议的活动将改善解决社区需求的协议。情感计算是一个重要的研究领域,旨在理解,分析,识别和综合人类情绪。为当前的基于语音的界面提供情感功能可以促进与人类计算机互动(HCI),医疗保健,安全和防御,教育和娱乐相关领域的变革性应用。该项目中设想的研究基础架构将为我们无法通过当前的语音情绪数据库解决的新机会开放。在情感计算领域,拟议的语料库将提供合适的培训集,以探索功能强大但需要大量标记数据的学习算法。可以预期,拟议的语料库中的规模,自然性和说话者和记录多样性将使社区能够创建跨应用程序概括的强大模型。言语情感识别系统的改进将有助于这些算法转变为实用应用,从而提供独特的社会利益。拟议的基础架构还将在其他语音处理任务中发挥关键作用。社区首次将建立基础架构来解决扬声器验证和自动语音识别解决方案,以防止因情绪而变化。拟议的基础架构依赖于一种基于情绪检索的新方法,以及基于人群的注释,以有效地建立自然的情绪数据库,并构建一种自然的情绪数据库,并构建了平衡的情绪内容,并减少了手动劳动,并减少了手工劳动,并减少了手工劳动。该数据库考虑了在音频共享网站中可用的播客录音。尽管先前已经探讨了使用媒体内容构建情感数据库的方法,但这项研究的贡献是使用机器学习算法来检索具有平衡的情感内容的音频剪辑,从而提供了更广泛的情感范围的自然刺激。提出的方法依靠自动算法来进行后处理播客和经济有效的注释过程,这使得构建大规模的语音情感数据库成为可能。这种方法提供了自然的情感演绎,这些替代数据收集协议很难获得。该项目涉及研究社区,该研究社区的设计是该社区基础设施计划项目的关键目标。社区在选择目标句子的选择中也发挥着关键作用,并带有新颖的挑战,其目标是在不受限制的,无标记的录音中识别和检索目标情感行为。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和广泛的影响来评估NSF的法定任务,并被视为值得的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Uncertainty in Predicting Emotional Attributes from Spontaneous Speech
通过自发言语预测情感属性的不确定性建模
Semi-Supervised Speech Emotion Recognition With Ladder Networks
An Efficient Temporal Modeling Approach for Speech Emotion Recognition by Mapping Varied Duration Sentences into Fixed Number of Chunks
  • DOI:
    10.21437/interspeech.2020-2636
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Wei-Cheng;Busso, Carlos
  • 通讯作者:
    Busso, Carlos
The MSP-Conversation Corpus
MSP-对话语料库
  • DOI:
    10.21437/interspeech.2020-2444
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martinez-Lucas, Luz;Abdelwahab, Mohammed;Busso, Carlos
  • 通讯作者:
    Busso, Carlos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Busso其他文献

Mixed Emotion Modelling for Emotional Voice Conversion
用于情感语音转换的混合情感建模
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Zhou;Berrak Sisman;Carlos Busso;Haizhou Li
  • 通讯作者:
    Haizhou Li
Enhanced Facial Landmarks Detection for Patients with Repaired Cleft Lip and Palate
增强唇裂和腭裂修复患者的面部标志检测
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Rosero;Ali N. Salman;Berrak Sisman;R. Hallac;Carlos Busso
  • 通讯作者:
    Carlos Busso
SPEECH EMOTION RECOGNITION IN REAL STATIC AND DYNAMIC HUMAN-ROBOT INTERACTION SCENARIOS
真实静态和动态人机交互场景中的语音情感识别
  • DOI:
    10.1016/j.csl.2024.101666
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicolás Grágeda;Carlos Busso;Eduardo Alvarado;Ricardo García;R. Mahú;F. Huenupán;N. B. Yoma
  • 通讯作者:
    N. B. Yoma
Revealing Emotional Clusters in Speaker Embeddings: A Contrastive Learning Strategy for Speech Emotion Recognition
揭示说话人嵌入中的情感簇:语音情感识别的对比学习策略
  • DOI:
    10.1109/icassp48485.2024.10447060
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ismail Rasim Ulgen;Zongyang Du;Carlos Busso;Berrak Sisman
  • 通讯作者:
    Berrak Sisman
Understanding Bias in Multispectral Autofluorescence Lifetime Imaging: Are Models Sensitive to Oral Location?
了解多光谱自发荧光寿命成像中的偏差:模型对口腔位置敏感吗?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kayla Caughlin;Rodrigo Cuenca Martinez;Gabriel P. Tortorelli;Dds Kathleen E. Higgins;Dds Ronald Faram;Javier A. Jo;Carlos Busso
  • 通讯作者:
    Carlos Busso

Carlos Busso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Busso', 18)}}的其他基金

CCRI: Medium: MSP-Podcast: Creating The Largest Speech Emotional Database By Leveraging Existing Naturalistic Recordings
CCRI:媒介:MSP-Podcast:利用现有的自然主义录音创建最大的语音情感数据库
  • 批准号:
    2016719
  • 财政年份:
    2020
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
RI: Small: Integrative, Semantic-Aware, Speech-Driven Models for Believable Conversational Agents with Meaningful Behaviors
RI:小型:集成的、语义感知的、语音驱动的模型,用于具有有意义行为的可信会话代理
  • 批准号:
    1718944
  • 财政年份:
    2017
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
FG 2015 Doctoral Consortium: Travel Support for Graduate Students
FG 2015 博士联盟:研究生旅行支持
  • 批准号:
    1540944
  • 财政年份:
    2015
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
CAREER: Advanced Knowledge Extraction of Affective Behaviors During Natural Human Interaction
职业:人类自然互动过程中情感行为的高级知识提取
  • 批准号:
    1453781
  • 财政年份:
    2015
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
EAGER: Exploring the Use of Synthetic Speech as Reference Model to Detect Salient Emotional Segments in Speech
EAGER:探索使用合成语音作为参考模型来检测语音中的显着情感片段
  • 批准号:
    1329659
  • 财政年份:
    2013
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
WORKSHOP: Doctoral Consortium for the International Conference on Multimodal Interaction (ICMI 2013)
研讨会:多模式交互国际会议博士联盟 (ICMI 2013)
  • 批准号:
    1346655
  • 财政年份:
    2013
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Exploring Audiovisual Emotion Perception using Data-Driven Computational Modeling
RI:小型:协作研究:使用数据驱动的计算模型探索视听情感感知
  • 批准号:
    1217104
  • 财政年份:
    2012
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Workshop: Doctoral Consortium at the 14th International Conference on Multimodal Interaction
研讨会:第14届多模态交互国际会议博士联盟
  • 批准号:
    1249319
  • 财政年份:
    2012
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
ci-Eln促进亲本基因Eln介导的缺氧肺动脉平滑肌细胞增殖的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通过单细胞转录组测序揭示Wolbachia诱导果蝇CI的分子机制
  • 批准号:
    32170497
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
森林垂直分层LAI和CI时空变异特征、LiDAR遥感反演与验证研究
  • 批准号:
    42171358
  • 批准年份:
    2021
  • 资助金额:
    59.00 万元
  • 项目类别:
    面上项目
森林垂直分层LAI和CI时空变异特征、LiDAR遥感反演与验证研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349936
  • 财政年份:
    2024
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了