CAREER: Energy-Efficient and Energy-Proportional Silicon-Photonic Manycore Architectures
职业:节能且能量均衡的硅光子众核架构
基本信息
- 批准号:1453853
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing energy demands have put computing on an unsustainable technological, economic and environmental path. Unfortunately, a large fraction of this energy is wasted, with data transfers being one of the major contributors to energy consumption. At the same time, while the demand for computing grows, modern microprocessors are increasingly constrained by physical limitations, which prevent them from realizing their full potential. Area, power, thermal, off-chip bandwidth, and yield limitations constrain single-chip designs to a relatively small number of cores, beyond which scaling becomes impractical. Multi-chip designs can overcome these limitations, but require a cross-chip interconnect with bandwidth, latency, and energy efficiency characteristics well beyond the reach of conventional electrical signaling. Introduction of nano-photonic interconnects, as undertaken in this proposal, can meet these requirements and allow systems to break free of the limitations of single-chip designs. Within the context of this research, a rigorous educational plan is also integrated into the research agenda that strongly connects research to education, and enhances the participation of minorities and undergraduates in research. This project capitalizes on existing collaborations with the Searle Center for Teaching Excellence at Northwestern University to implement innovative educational approaches, Northwestern?s Science in Society outreach initiatives for the general public, and Northwestern?s Office of STEM Education Partnerships to develop K-12 STEM outreach activities with outreach potential extending to 140+ schools in the Chicago metropolitan area, reaching 368 teachers and 30,000 students.Specific technical aspects of this research aims to develop scalable, energy-efficient, and energy-proportional interconnects for future multicores. To achieve this vision, the research seeks to understand and mitigate the energy inefficiencies of the dominant power consumers in silicon-photonics. The project involves a cross-cutting approach to combine developments in novel materials, emerging devices, and 3D-stacking with research in architectural and micro-architectural techniques, memory systems, the runtime environment, and the operating system, to develop adaptive techniques that minimize the energy consumed by nano-photonic interconnects without sacrificing their performance. The overall effort culminates on the design of a virtual macro-chip, a disaggregated many-core design supported by a silicon-photonic interconnect that reaches scales of thousands of cores, at a performance and power level impossible to realize with conventional technology.
不断增长的能源需求使计算走上了一条不可持续的技术、经济和环境道路。不幸的是,这些能源中有很大一部分被浪费了,而数据传输是能源消耗的主要贡献者之一。与此同时,随着计算需求的增长,现代微处理器越来越受到物理限制的限制,这使它们无法充分发挥其潜力。面积、功耗、散热、片外带宽和产量限制将单芯片设计限制在相对较少的内核数量上,超过这一数量,扩展变得不切实际。 多芯片设计可以克服这些限制,但需要跨芯片互连,其带宽、延迟和能效特性远远超出传统电信号的范围。 如本提案所述,纳米光子互连的引入可以满足这些要求,并允许系统摆脱单芯片设计的限制。在这项研究的范围内,还将一项严格的教育计划纳入研究议程,将研究与教育紧密联系起来,并加强少数群体和大学生对研究的参与。该项目利用现有的合作与塞尔中心的教学卓越在西北大学实施创新的教育方法,西北?的科学在社会推广计划,为公众和西北?的STEM教育合作伙伴办公室开发K-12 STEM推广活动,推广潜力扩展到芝加哥大都市区的140多所学校,达到368名教师和30,000名学生。这项研究的具体技术方面旨在为未来的多核开发可扩展的,节能的和能源比例的互连。为了实现这一愿景,该研究旨在了解和减轻硅光子学中占主导地位的电力消费者的能源效率低下。该项目涉及一个交叉的方法,联合收割机在新材料,新兴器件和3D堆叠的发展与建筑和微建筑技术,内存系统,运行时环境和操作系统的研究,开发自适应技术,最大限度地减少纳米光子互连所消耗的能量,而不牺牲其性能。整体努力的高潮是虚拟宏芯片的设计,这是一种由硅光子互连支持的分散式多核设计,可达到数千个核心的规模,其性能和功率水平是传统技术无法实现的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikos Hardavellas其他文献
A Practical Shared Optical Cache With Hybrid MWSR/R-SWMR NoC for Multicore Processors
适用于多核处理器的实用共享光学高速缓存,具有混合 MWSR/R-SWMR NoC
- DOI:
10.1145/3531012 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Haiyang Han;T. Alexoudi;C. Vagionas;N. Pleros;Nikos Hardavellas - 通讯作者:
Nikos Hardavellas
Computing With an All-Optical Cache Hierarchy Using Optical Phase Change Memory as Last Level Cache
使用光学相变存储器作为最后一级高速缓存的全光高速缓存层次结构的计算
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Haiyang Han;T. Alexoudi;C. Vagionas;N. Pleros;Nikos Hardavellas - 通讯作者:
Nikos Hardavellas
An Analysis of Database System Performance on Chip Multiprocessors
片上多处理器数据库系统性能分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Nikos Hardavellas;Ippokratis Pandis;Naju Mancheril;S. Harizopoulos;A. Ailamaki;B. Falsafi - 通讯作者:
B. Falsafi
Service Bus
服务总线
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R. Topor;K. Salem;Amarnath Gupta;K. Goda;J. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;R. Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;M. Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;E. Fernández;Murat Kantarcioglu;Jaideep Vaidya;I. Ray;A. Vakali;Cristina Sirangelo;E. Pitoura;H. Gupta;S. Chaudhuri;G. Weikum;U. Leser;D. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;C. Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;R. Siebes;G. Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;K. Ramamritham;Panos K. Chrysanthis;K. Sattler;S. Bressan;S. Abiteboul;Dan Suciu;G. Dobbie;T. Ling;Sugato Basu;R. Govindan;Michael H. Böhlen;C. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;M. Nascimento;Michael Huggett;A. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;A. Fekete;M. Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;K. Fraser;Jingren Zhou;M. Mokbel;W. Aref;M. Moro;Markus Schneider;Panos Kalnis;G. Ghinita;M. Goodchild;Shashi Shekhar;James M. Kang;Vijay Gandhi;N. Mamoulis;Betsy George;M. Scholl;A. Voisard;R. H. Güting;Yufei Tao;Dimitris Papadias;P. Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;B. Thalheim;J. Pehcevski;Benjamin Piwowarski;S. Theodoridis;K. Koutroumbas;George Karabatis;D. Chamberlin;P. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;K. Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;T. Johnson;H. Jacobsen;S. Fienberg;Jiashun Jin;R. Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;E. Rasmussen;H. Yoshida;G. Graefe;B. Reiner;K. Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;M. Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;M. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;C. Leung;M. Crochemore;T. Lecroq;A. Shoshani;Jimmy J. Lin;Hw Yu;D. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann - 通讯作者:
Thomas Neumann
Exploiting Dark Silicon for Energy Efficiency EXECUTIVE
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Nikos Hardavellas - 通讯作者:
Nikos Hardavellas
Nikos Hardavellas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikos Hardavellas', 18)}}的其他基金
SHF:Small:Collaborative Research: Elastic Fidelity: Trading-off Computational Accuracy for Energy Efficiency
SHF:Small:合作研究:弹性保真度:计算精度与能源效率的权衡
- 批准号:
1218768 - 财政年份:2012
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Leveraging physical properties of modern flash memory chips for resilient, secure, and energy-efficient edge storage systems
职业:利用现代闪存芯片的物理特性打造弹性、安全且节能的边缘存储系统
- 批准号:
2346853 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
- 批准号:
2239945 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant














{{item.name}}会员




