CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
基本信息
- 批准号:2239945
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As the fundamental and critical robotic task for planning and deciding the actions of robots, motion planning is widely desired in many real-world applications, such as autonomous driving, in-warehouse package handling, assisted surgery etc. To date, there exists an increasing performance gap between the intensive computation of modern motion planning workloads and the insufficient support from general-purpose hardware, calling for efficient hardware acceleration to realize real-time energy-efficient high-quality planning. This project proposes Chimp, a cross-layer co-design framework for highly efficient motion planning processor. Chimp aims to develop a new design paradigm that can efficiently integrate domain expertise into learning-based motion planning, improving the planning reliability and performance. This project will significantly promote the intelligence and durability of modern autonomous systems, enhancing the economic opportunities in many fields such as autonomous driving, smart manufacturing, and intelligent healthcare. This project will enrich the curriculum of the university and promote the involvement of students from underrepresented minority groups, undergraduates and K-12 students in the STEM fields.This project aims to perform algorithm-hardware-automation co-exploration to simultaneously enable high planning performance and high hardware performance. It delivers innovations at three levels: (1) it develops key design principles that can guide the efficient integration of domain expertise to the construction of high-performance learning-based motion planners in complex physical-world settings and resource-constrained scenarios; (2) it builds new hardware primitives that specifically support the unique computing patterns in motion planning. It also proposes a series of optimization techniques for dataflow and microarchitecture, improving hardware efficiency and system utilization; and (3) it offers automatic design, mapping and evaluation of the motion planning model and hardware with different algorithmic, architectural and application constraints and budgets, enabling the improved efficiency of design flow and better exploration of design space. Both software and hardware implementation and evaluation will be performed on robotic simulators, Field-programmable gate array boards and real-world robots in different working environments. The research outcomes of this project will advance various technical fields, such as computing hardware, robotics and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为规划和决定机器人动作的基础和关键机器人任务,运动规划在许多现实应用中被广泛期望,例如自动驾驶、仓库内包裹处理、辅助手术等。迄今为止,现代运动规划工作负载的密集计算与通用硬件的支持不足之间存在着越来越大的性能差距,需要高效的硬件加速,实现实时节能高质量规划。该项目提出了Chimp,一个高效运动规划处理器的跨层协同设计框架。Chimp旨在开发一种新的设计范式,可以有效地将领域专业知识集成到基于学习的运动规划中,提高规划的可靠性和性能。该项目将显著促进现代自动驾驶系统的智能化和耐用性,增加自动驾驶、智能制造和智能医疗等多个领域的经济机会。该项目将丰富大学的课程,并促进来自代表性不足的少数群体的学生,本科生和K-12学生参与STEM领域。该项目旨在进行算法-硬件-自动化的共同探索,同时实现高规划性能和高硬件性能。它在三个层面上提供创新:(1)它开发了关键的设计原则,可以指导在复杂的物理世界设置和资源受限的场景中有效整合领域专业知识,以构建基于学习的高性能运动规划器;(2)它构建了专门支持运动规划中独特计算模式的新硬件原语。提出了一系列的优化技术,提高了硬件效率和系统利用率;(3)在不同的算法、架构和应用约束和预算条件下,实现了运动规划模型和硬件的自动设计、映射和评估,提高了设计流程的效率,更好地探索了设计空间。软件和硬件的实施和评估将在机器人模拟器、现场可编程门阵列板和不同工作环境中的真实机器人上进行。该项目的研究成果将推动计算硬件、机器人和机器学习等各个技术领域的发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DynGMP: Graph Neural Network-Based Motion Planning in Unpredictable Dynamic Environments
- DOI:10.1109/iros55552.2023.10342326
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Wenjin Zhang;Xiao Zang;Lingyi Huang;Yang Sui;Jingjin Yu;Yingying Chen;Bo Yuan
- 通讯作者:Wenjin Zhang;Xiao Zang;Lingyi Huang;Yang Sui;Jingjin Yu;Yingying Chen;Bo Yuan
GraphMP: Graph Neural Network-based Motion Planning with Efficient Graph Search
GraphMP:具有高效图搜索的基于图神经网络的运动规划
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zang, X;Yin, M;Xiao, J;Zonouz S;Yuan, B.
- 通讯作者:Yuan, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Yuan其他文献
Microwave Staring Correlated Imaging Based on Time-Division Observation and Digital Waveform Synthesis
基于时分观测和数字波形合成的微波凝视相关成像
- DOI:
10.3390/electronics9101627 - 发表时间:
2020-10 - 期刊:
- 影响因子:2.9
- 作者:
Bo Yuan;Zheng Jiang;Jianlin Zhang;Yuanyue Guo;Dongjin Wang - 通讯作者:
Dongjin Wang
Near-infrared spectroscopy for liquids of microliter volume using capillaries with wall transmission.
使用壁透射毛细管对微升体积液体进行近红外光谱分析。
- DOI:
10.1039/b301142a - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
K. Murayama;Bo Yuan;Y. Ozaki;M. Tomida;S. Era - 通讯作者:
S. Era
Capturing tensile size-dependency in polymer nanofiber elasticity
捕获聚合物纳米纤维弹性的拉伸尺寸依赖性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.9
- 作者:
Bo Yuan;Jun Wang;Ray P.S. Han - 通讯作者:
Ray P.S. Han
How to win in FIFA World Cup Qatar 2022? A study on the configurations of technical and tactical indicators based on fuzzy-set qualitative comparative analysis
如何在 2022 年卡塔尔世界杯上获胜?
- DOI:
10.3389/fpsyg.2023.1307346 - 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Weihua Yan;Shiyue Li;Di Wang;Bo Yuan;Haocheng Zeng;Dingmeng Ren - 通讯作者:
Dingmeng Ren
On the interaction of resonance and Bragg scattering effects for the locally resonant phononic crystal with alternating elastic and fluid matrices
具有交替弹性和流体矩阵的局部谐振声子晶体的谐振和布拉格散射效应的相互作用
- DOI:
10.1515/aoa-2017-0075 - 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Bo Yuan;Yong Chen;Min Jiang;Tang Tang;Miao He;Minglin Tu - 通讯作者:
Minglin Tu
Bo Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Yuan', 18)}}的其他基金
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1955909 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Renewal: Preparing Crosscutting Cybersecurity Scholars
更新:培养跨领域网络安全学者
- 批准号:
1922169 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1854737 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1815699 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1733834 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SFS: Preparing Crosscutting Cybersecurity Scholars
SFS:培养跨领域网络安全学者
- 批准号:
1433736 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
- 批准号:81572468
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
- 批准号:
2345580 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant