Emphasis Year in Geometric Analysis at Northwestern University

西北大学几何分析重点年

基本信息

  • 批准号:
    1454077
  • 负责人:
  • 金额:
    $ 4.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Emphasis Year in Geometric Analysis at Northwestern, April 1, 2015 - March 31, 2016, Northwestern University, Evanston IL. This grant is for a four-day workshop and a seven-day summer school at Northwestern University on the topic of geometric analysis, with the goals of training junior mathematicians in the field and stimulating new research. Geometric analysis is the study of differential equations on geometric spaces, such as the equations of Einstein which describe gravitation in terms of the curvature of space-time. The four-day workshop, to be held in May 2015, will feature 18 talks by experts on the topic of Ricci curvature, a central object in geometric analysis. The summer school, to be held in July 2015, will include six introductory mini-courses on various topics within geometric analysis, aimed at graduate students and recent PhDs. Grant funds will be used primarily for the travel costs of attendees who are graduate students or postdoctoral scholars at US institutions. The organizing committee will seek broad and diverse participation in these activities, and will especially encourage the participation of women mathematicians and members of other under-represented groups. More information on these events, which are part of an Emphasis Year in Geometric Analysis at Northwestern, can be found on the website: http://www.math.northwestern.edu/emphasisGA/ In the last few decades, Ricci curvature has emerged as a central concept in several branches of geometric analysis, including: Riemannian geometry and geometric flows; limits of Riemannian manifolds; complex geometry and Kahler-Einstein metrics; metric measure spaces and optimal transport. The four-day Workshop on Ricci Curvature will bring together experts on all of these topics, in order to educate the next generation of geometric analysts, stimulate new ideas and create new research collaborations. The seven-day Summer School in Geometric Analysis will feature mini-courses on six important and overlapping areas of geometric analysis: the mean curvature flow; the Ricci flow; Ricci curvature; the Kahler-Ricci flow; the complex Monge-Ampere equation; and geodesics in the space of Kahler metrics. These courses will be given by experts in the field and will be aimed at graduate students and postdoctoral scholars with the goal of bringing them up to the forefront of research in geometric analysis.
重点年几何分析在西北,2015年4月1日至2016年3月31日,西北大学,埃文斯顿IL。 这笔赠款用于在西北大学举办一个为期四天的讲习班和一个为期七天的暑期学校,主题是几何分析,目的是培训该领域的初级数学家并刺激新的研究。 几何分析是对几何空间上的微分方程的研究,例如爱因斯坦的方程,它描述了时空曲率方面的引力。 为期四天的研讨会将于2015年5月举行,专家们将就几何分析的核心对象-里奇曲率进行18次演讲。 暑期学校将于2015年7月举行,将包括六个介绍性的微型课程,涉及几何分析中的各种主题,针对研究生和最近的博士生。 赠款资金将主要用于美国机构的研究生或博士后学者的与会者的旅费。 组织委员会将寻求广泛和多样化地参与这些活动,并将特别鼓励女数学家和其他代表性不足的群体的成员参加。 这些事件是西北大学几何分析重点年的一部分,有关这些事件的更多信息可在网站上找到:http://www.math.northwestern.edu/emphasisGA/在过去的几十年里,里奇曲率已成为几何分析的几个分支中的核心概念,包括:Riemannian几何和几何流; Riemannian流形的极限;复几何和卡勒-爱因斯坦度量;度量空间和最优传输。 为期四天的Ricci Curvature研讨会将汇集所有这些主题的专家,以教育下一代几何分析师,激发新的想法并创造新的研究合作。 为期七天的几何分析暑期学校将在几何分析的六个重要和重叠领域开设迷你课程:平均曲率流; Ricci流; Ricci曲率; Kahler-Ricci流;复杂的Monge-Ampere方程;和Kahler度量空间中的测地线。这些课程将由该领域的专家提供,并将针对研究生和博士后学者,目标是将他们带到几何分析研究的最前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Weinkove其他文献

Benjamin Weinkove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Weinkove', 18)}}的其他基金

Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
  • 批准号:
    2005311
  • 财政年份:
    2020
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Elliptic and Parabolic Partial Differential Equations on Manifolds
流形上的椭圆和抛物型偏微分方程
  • 批准号:
    1709544
  • 财政年份:
    2017
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Nonlinear PDEs and complex geometry
非线性偏微分方程和复杂几何
  • 批准号:
    1406164
  • 财政年份:
    2014
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1332196
  • 财政年份:
    2012
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1105373
  • 财政年份:
    2011
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0848193
  • 财政年份:
    2008
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0804099
  • 财政年份:
    2008
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Parabolic flows and canonical metrics in Kahler geometry.
卡勒几何中的抛物线流和规范度量。
  • 批准号:
    0504285
  • 财政年份:
    2005
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant

相似海外基金

CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Studentship
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
  • 批准号:
    2345247
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Expanding Pathways for Preparing the Next Generation of Engineers: First-Year Engineering 2.0 (FYE2.0)
拓展培养下一代工程师的途径:一年级工程 2.0 (FYE2.0)
  • 批准号:
    2337003
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Extracurricular Instrument Training Experience for Students at a Two-Year College
两年制大学学生课外乐器培训体验
  • 批准号:
    2323078
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Conference: A Virtual Workshop for Two-Year College Geoscience Faculty to Develop National Science Foundation Grant Proposals
会议:两年制大学地球科学教师制定国家科学基金会拨款提案的虚拟研讨会
  • 批准号:
    2349758
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Studentship
Conference: Two-Year College Data Science Initiative (TYCDSI) Workshop
会议:两年大学数据科学计划 (TYCDSI) 研讨会
  • 批准号:
    2402290
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Using Advanced Technology to Enhance Learning and Teaching in Science Labs at Two-Year Colleges
利用先进技术加强两年制学院科学实验室的学习和教学
  • 批准号:
    2329563
  • 财政年份:
    2024
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了