Nonlinear Partial Differential Equations and Geometry

非线性偏微分方程和几何

基本信息

  • 批准号:
    2005311
  • 负责人:
  • 金额:
    $ 24.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Many physical theories have been modeled successfully by mathematical equations known as partial differential equations (PDEs). The classical examples are the heat equation, the wave equation and the Laplace equation, which describe in ideal conditions the behavior of heat, waves and electrostatic potentials respectively. These are linear PDEs. More complicated theories are often modeled by nonlinear PDEs. A classic nonlinear PDE is the Monge-Ampere equation which has connections to the physical theory of optics but is also a powerful tool in the study of geometry. This research will investigate several nonlinear PDE, all related to the Monge-Ampere equation, which arise in geometry or which exhibit geometric behavior. The research goals are two-fold: to use nonlinear PDEs to advance our understanding of geometric spaces and the structures that live on them; and to understand the phenomena and behavior of solutions of nonlinear PDE using the tools and language of geometry. In addition the PI will also train graduate students in the methods of nonlinear PDEs and geometry, and guide their research.The PI will carry out research on nonlinear PDEs and geometry. There are five projects, linked by the common theme of the complex Monge-Ampere equation and focusing on developing new analytic tools and strategies to derive a priori estimates. For the first project, the PI will investigate a conjecture of Donaldson extending Yau’s theorem on the complex Monge-Ampere equation to the setting of symplectic 4-manifolds, using an ansatz which reduces the nonlinear PDE to an equation of a single real-valued function. A second project will study Perelman’s estimates for the Kahler-Ricci flow with the goal of understanding the behavior of the flow when there is a finite time singularity. A further project is to investigate a non-Kahler version of this flow, known as the Chern-Ricci flow, with a focus on finite time singularities on complex surfaces. Another project will extend the work of Chen-Cheng and Shen on the question of existence of metrics with constant Chern scalar curvature, in the setting of non-Kahler complex surfaces. A final project is to study the uniform convexity of convex solutions to PDEs satisfying certain structure conditions, building on constant rank theorems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理理论已经成功地被称为偏微分方程(PDE)的数学方程建模。 经典的例子是热方程、波动方程和拉普拉斯方程,它们分别描述了理想条件下热、波和静电势的行为。 这些是线性偏微分方程。 更复杂的理论通常由非线性偏微分方程建模。 一个经典的非线性偏微分方程是Monge-Ampere方程,它与光学的物理理论有联系,但也是研究几何的有力工具。 本研究将探讨几个非线性偏微分方程,所有相关的蒙格-安培方程,其中出现在几何或表现出几何行为。 研究目标有两个方面:使用非线性偏微分方程来推进我们对几何空间及其结构的理解;使用几何工具和语言来理解非线性偏微分方程解的现象和行为。 此外,PI还将对研究生进行非线性偏微分方程和几何方法的培训,并指导他们的研究。PI将开展非线性偏微分方程和几何的研究。有五个项目,由复杂的蒙赫-安培方程的共同主题联系在一起,重点是开发新的分析工具和战略,以得出先验估计。 对于第一个项目,PI将调查唐纳森的猜想,将丘的定理扩展到复杂的Monge-Ampere方程的辛4-流形的设置,使用一个将非线性偏微分方程简化为一个单一的实值函数的方程。 第二个项目将研究佩雷尔曼对卡勒-里奇流的估计,目的是了解当存在有限时间奇点时的流动行为。 另一个项目是研究这种流的非Kahler版本,称为Chern-Ricci流,重点是复杂表面上的有限时间奇点。 另一个项目将扩大陈诚和沉的工作的存在性问题的度量与常陈标量曲率,在设置的非Kahler复杂的曲面。 最后一个项目是研究满足一定结构条件的偏微分方程凸解的一致凸性,建立在常数秩定理的基础上。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The insulated conductivity problem, effective gradient estimates and the maximum principle
  • DOI:
    10.1007/s00208-021-02314-3
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    B. Weinkove
  • 通讯作者:
    B. Weinkove
The perfect conductivity problem with arbitrary vanishing orders and non-trivial topology
Instantaneous convexity breaking for the quasi-static droplet model
准静态液滴模型的瞬时凸性破坏
  • DOI:
    10.4171/ifb/498
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Chau, Albert;Weinkove, Ben
  • 通讯作者:
    Weinkove, Ben
Weak Harnack inequalities for eigenvalues and constant rank theorems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Weinkove其他文献

Benjamin Weinkove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Weinkove', 18)}}的其他基金

Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Elliptic and Parabolic Partial Differential Equations on Manifolds
流形上的椭圆和抛物型偏微分方程
  • 批准号:
    1709544
  • 财政年份:
    2017
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Emphasis Year in Geometric Analysis at Northwestern University
西北大学几何分析重点年
  • 批准号:
    1454077
  • 财政年份:
    2015
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Nonlinear PDEs and complex geometry
非线性偏微分方程和复杂几何
  • 批准号:
    1406164
  • 财政年份:
    2014
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1332196
  • 财政年份:
    2012
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1105373
  • 财政年份:
    2011
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0848193
  • 财政年份:
    2008
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0804099
  • 财政年份:
    2008
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Parabolic flows and canonical metrics in Kahler geometry.
卡勒几何中的抛物线流和规范度量。
  • 批准号:
    0504285
  • 财政年份:
    2005
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了