CAREER: Novel Photonic Structures Using Non-Hermitian Exceptional Points

职业:使用非厄米特例外点的新型光子结构

基本信息

项目摘要

Abstract Title: Novel Photonic Structures for Lasers and Sensing by Using Gain and Loss Technical Description: The proposed research aims to introduce a new paradigm in optics by utilizing the unconventional properties of exceptional points arising in systems with gain and loss. These features can be employed to build structures with customized properties and functionalities- previously thought to be unattainable. The applications of such developments range from on-chip communication systems, to high power semiconductor lasers, to sensing. This research will result in a better understanding of how amplification and attenuation can be independently manipulated and harnessed in both optically and electrically pumped arrangement and will shed light on the role and the fundamentals of exceptional points in optics. In addition, the proposed work provides a bridge between mathematics, quantum physics, and engineering while promoting the concept of exceptional points in optics. These ideas could lead to new design tools that can be deployed to address some of the long-standing problems in laser physics. If successful, this effort could potentially transform chip-scale integrated photonics and high power semiconductor laser technologies. Due to the interdisciplinary nature of the proposed activity, the students engaged in this project will have the opportunity to prepare for a broad range of future careers by experiencing all the steps involved in a scientific endeavor, starting from conceiving an idea that perhaps originates from mathematics, to experimentally demonstrating the anticipated behavior, and finally building a prototype device. By means of presentations, publications, and classroom/laboratory teaching, the knowledge acquired during the course of this project will be disseminated to a broader audience. This program will provide research opportunities not only to graduate, but also to undergraduate, and K-12 students. Finally, students from minority and under-represented groups will be proactively integrated into the research environment. Non-Technical Description: The proposed effort will make use of the physics and peculiarities of non-Hermitian exceptional points (EPs) in order to develop alternative strategies in designing novel photonic devices that complement and/or improve existing integrated photonic circuits. In a photonic system, exceptional points can be advantageously introduced through a judicious interplay between refractive index shaping and gain-loss contrast. Along these lines, two endeavors associated with chip-scale photonic components and networks will be pursued: (i) demonstrating a new class of single mode integrated lasers with increased brightness and/or spectral purity, (ii) enhancing the sensing characteristics of active photonic molecules by exploiting the inherent features of higher-order exceptional points. The prospect of using InP technologies as a versatile platform to explore the physics and applications of exceptional points in optics will also be investigated.
摘要标题:利用增益和损耗用于激光和传感的新型光子结构技术描述:所提出的研究旨在利用增益和损耗系统中出现的异常点的非常规特性,引入光学新范式。这些特征可用于构建具有定制属性和功能的结构——以前被认为是无法实现的。此类开发的应用范围从片上通信系统到高功率半导体激光器,再到传感。这项研究将有助于更好地理解如何在光泵浦和电泵浦布置中独立操纵和利用放大和衰减,并将阐明光学中特殊点的作用和基本原理。此外,拟议的工作在数学、量子物理和工程学之间架起了一座桥梁,同时推广了光学中特异点的概念。这些想法可能会带来新的设计工具,可以用来解决激光物理学中一些长期存在的问题。如果成功,这项努力可能会改变芯片级集成光子学和高功率半导体激光技术。由于拟议活动的跨学科性质,参与该项目的学生将有机会通过体验科学努力所涉及的所有步骤,从构思可能源自数学的想法,到通过实验演示预期的行为,最后构建原型设备,为广泛的未来职业做好准备。通过演示、出版物和课堂/实验室教学,在该项目过程中获得的知识将传播给更广泛的受众。该项目不仅为研究生提供研究机会,还为本科生和 K-12 学生提供研究机会。最后,来自少数群体和代表性不足群体的学生将主动融入研究环境。非技术描述:拟议的工作将利用非厄米特点(EP)的物理特性和特性,以开发设计新颖光子器件的替代策略,以补充和/或改进现有的集成光子电路。在光子系统中,可以通过折射率整形和增益损失对比度之间明智的相互作用来有利地引入异常点。沿着这些思路,将致力于与芯片级光子元件和网络相关的两项努力:(i)展示一种具有更高亮度和/或光谱纯度的新型单模集成激光器,(ii)通过利用高阶异常点的固有特征来增强活性光子分子的传感特性。还将研究使用 InP 技术作为通用平台来探索光学特殊点的物理和应用的前景。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unidirectional light emission in PT-symmetric microring lasers
  • DOI:
    10.1364/oe.26.027153
  • 发表时间:
    2018-10-15
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ren, Jinhan;Liu, Yuzhou G. N.;Khajavikhan, Mercedeh
  • 通讯作者:
    Khajavikhan, Mercedeh
Topological insulator laser: Theory
  • DOI:
    10.1126/science.aar4003
  • 发表时间:
    2018-03-16
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Harari, Gal;Bandres, Miguel A.;Segev, Mordechai
  • 通讯作者:
    Segev, Mordechai
Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems
  • DOI:
    10.1364/optica.5.001342
  • 发表时间:
    2018-10-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Mortensen, N. Asger;Goncalves, P. A. D.;Wolff, Christian
  • 通讯作者:
    Wolff, Christian
Realizing spin Hamiltonians in nanoscale active photonic lattices
  • DOI:
    10.1038/s41563-020-0635-6
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    M. Parto;W. Hayenga;A. Marandi;D. Christodoulides;M. Khajavikhan
  • 通讯作者:
    M. Parto;W. Hayenga;A. Marandi;D. Christodoulides;M. Khajavikhan
Supersymmetric laser arrays
  • DOI:
    10.1126/science.aav5103
  • 发表时间:
    2019-02-08
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Hokmabadi, Mohammad P.;Nye, Nicholas S.;Khajavikhan, Mercedeh
  • 通讯作者:
    Khajavikhan, Mercedeh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mercedeh Khajavikhan其他文献

Guiding charged particles in vacuum via Lagrange points
通过拉格朗日点在真空中引导带电粒子
  • DOI:
    10.1038/s41467-024-51083-5
  • 发表时间:
    2024-08-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Haokun Luo;Yunxuan Wei;Georgios G. Pyrialakos;Mercedeh Khajavikhan;Demetrios N. Christodoulides
  • 通讯作者:
    Demetrios N. Christodoulides
Photon–photon chemical thermodynamics of frequency conversion processes in highly multimode systems
高多模系统中频率转换过程的光子-光子化学热力学
  • DOI:
    10.1038/s41377-025-01856-4
  • 发表时间:
    2025-05-12
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Huizhong Ren;Georgios G. Pyrialakos;Qi Zhong;Fan O. Wu;Mercedeh Khajavikhan;Demetrios N. Christodoulides
  • 通讯作者:
    Demetrios N. Christodoulides
Observation of Joule–Thomson photon-gas expansion
焦耳-汤姆逊光子气体膨胀的观测
  • DOI:
    10.1038/s41567-024-02736-1
  • 发表时间:
    2025-01-14
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Marco S. Kirsch;Georgios G. Pyrialakos;Richard Altenkirch;Mahmoud A. Selim;Julius Beck;Tom A. W. Wolterink;Huizhong Ren;Pawel S. Jung;Mercedeh Khajavikhan;Alexander Szameit;Matthias Heinrich;Demetrios N. Christodoulides
  • 通讯作者:
    Demetrios N. Christodoulides
Non-Hermitian physics and PT symmetry
非厄米物理与宇称-时间对称
  • DOI:
    10.1038/nphys4323
  • 发表时间:
    2018-01-05
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Ramy El-Ganainy;Konstantinos G. Makris;Mercedeh Khajavikhan;Ziad H. Musslimani;Stefan Rotter;Demetrios N. Christodoulides
  • 通讯作者:
    Demetrios N. Christodoulides

Mercedeh Khajavikhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mercedeh Khajavikhan', 18)}}的其他基金

EAGER: Fundamental Considerations in Using Non-Hermitian Microscale Resonant Optical Structures for Rotation Sensing
EAGER:使用非厄米微尺度谐振光学结构进行旋转传感的基本考虑因素
  • 批准号:
    2011171
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Novel Photonic Structures Using Non-Hermitian Exceptional Points
职业:使用非厄米特例外点的新型光子结构
  • 批准号:
    2000538
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Fundamental Considerations in Using Non-Hermitian Microscale Resonant Optical Structures for Rotation Sensing
EAGER:使用非厄米微尺度谐振光学结构进行旋转传感的基本考虑因素
  • 批准号:
    1757025
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fundamental research and establishment of novel silicon photonic support vector machine towards multilayered architecture
面向多层结构的新型硅光子支持向量机的基础研究与建立
  • 批准号:
    23H01885
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on novel photonic crystal light sources using limit cycle oscillators
利用极限循环振荡器研究新型光子晶体光源
  • 批准号:
    23H01888
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326699
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Novel brain-inspired and neuromorphic photonic computing
新颖的受大脑启发的神经形态光子计算
  • 批准号:
    2733978
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
ACED Fab: Co-Design of Novel Electronic-Photonic Systems for Energy-Efficient Coherent Optical Interconnects
ACED Fab:用于节能相干光互连的新型电子-光子系统的协同设计
  • 批准号:
    2314868
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326698
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027840/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Characterization of Semiconductors for Novel Electronic, Photonic, and Energy Applications
用于新型电子、光子和能源应用的半导体表征
  • 批准号:
    DGECR-2022-00093
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了