CAREER: Driving the Future: Models and Control Methods to Coordinate Fleets of Self-Driving Vehicles in Future Transportation Networks

职业:驾驶未来:协调未来交通网络中自动驾驶车队的模型和控制方法

基本信息

  • 批准号:
    1454737
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) Program project advances scientific knowledge on the modeling, analysis, and control of robotic networks consisting of unmanned vehicles autonomously operating in a coordinated fashion to fulfill service requests such as the transportation of people or goods. To work efficiently, such systems must overcome allocation and scheduling challenges that, in practice, can create backups, unacceptable wait times, and detrimental cascade effects. This project will cast the problem within the framework of spatial queuing theory, and investigate theoretical models and real-time control methods to optimally allocate vehicles to service requests. Theory and control algorithms will be applied for the design, system-wide control, and economic assessment of autonomous mobility-on-demand systems. Such systems represent a transformative, rapidly developing mode of transportation where electric, self-driving shuttles transport urban passengers and provide a mobility option to people unable or unwilling to drive. The results of this project will benefit the U.S. economy by fostering clean and efficient future transportation systems and addressing 21st century mobility needs. More broadly, this research is applicable to a large class of robotic coordination problems and will positively impact several critical sectors including automated supply chains and logistics and national security. Experiments on full-scale autonomous shuttles will help broaden the participation of underrepresented groups in research and catalyze engineering education on cyber-physical systems. Current methods for controlling robotic networks are limited, particularly with respect to predictive accuracy and control synthesis with formal performance guarantees. Spatial queuing theory considers dynamic systems consisting of (i) spatially-localized queues that collect service requests generated by an exogenous dynamical process, and (ii) robotic service vehicles traveling among queues in a given network topology. As such, spatial queuing theory models a large variety of robotic coordination problems, with autonomous mobility-on-demand systems as a relevant example. The project will advance knowledge in the field by leveraging recent algorithmic techniques from stochastic network optimization to generate provably-correct tools for the modeling, analysis, and control of spatial queuing systems of increasing complexity and realism. Specifically, this award supports fundamental research to 1) advance the theory of spatial queuing systems, by devising methods for tractable analyses in complex setups, 2) generate control methods with performance guarantees for the optimal assignment of robotic vehicles to service requests, and 3) apply theory and control methods to the control of autonomous mobility-on-demand systems, through case studies and the deployment of algorithms on full scale test beds.
这个教师早期职业发展(CAREER)计划项目推进了对机器人网络的建模,分析和控制的科学知识,机器人网络由无人驾驶车辆组成,以协调的方式自主运行,以满足服务请求,如人员或货物的运输。 为了有效地工作,这些系统必须克服分配和调度的挑战,在实践中,这些挑战可能会造成备份、不可接受的等待时间和有害的级联效应。本计画将在空间排队论的框架内解决问题,并研究理论模型和实时控制方法,以最佳地分配车辆来满足服务请求。理论和控制算法将应用于自主移动按需系统的设计,系统范围的控制和经济评估。这些系统代表了一种变革性的、快速发展的交通模式,电动自动驾驶穿梭车可以运送城市乘客,并为无法或不愿意开车的人提供出行选择。该项目的结果将有利于美国经济,促进清洁和高效的未来交通系统,并解决21世纪世纪的流动需求。更广泛地说,这项研究适用于一大类机器人协调问题,并将对自动化供应链、物流和国家安全等几个关键领域产生积极影响。全尺寸自动航天飞机的实验将有助于扩大代表性不足的群体在研究中的参与,并促进网络物理系统的工程教育。目前用于控制机器人网络的方法是有限的,特别是在预测精度和具有正式性能保证的控制合成方面。空间排队论认为动态系统包括(i)收集由外源动态过程产生的服务请求的空间本地化队列,以及(ii)在给定网络拓扑中的队列之间行进的机器人服务车辆。因此,空间排队理论模型的机器人协调问题的各种各样的自主移动按需系统作为一个相关的例子。该项目将通过利用随机网络优化的最新算法技术来推进该领域的知识,以生成可证明正确的工具,用于对日益复杂和现实的空间排队系统进行建模,分析和控制。具体而言,该奖项支持基础研究:1)通过设计复杂设置中易于处理的分析方法来推进空间排队系统的理论,2)生成具有性能保证的控制方法,用于机器人车辆服务请求的最佳分配,以及3)将理论和控制方法应用于自主移动性按需系统的控制,通过案例研究和在全尺寸测试床上部署算法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Co-Design of AV-Enabled Mobility Systems
论自动驾驶移动系统的协同设计
Markets for Efficient Public Good Allocation with Social Distancing
保持社交距离的有效公共物品配置市场
When Efficiency meets Equity in Congestion Pricing and Revenue Refunding Schemes
当拥堵收费和收入返还计划中效率与公平相遇时
  • DOI:
    10.1145/3465416.3483296
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jalota, Devansh;Solovey, Kiril;Gopalakrishnan, Karthik;Zoepf, Stephen;Balakrishnan, Hamsa;Pavone, Marco
  • 通讯作者:
    Pavone, Marco
Real-Time Control of Mixed Fleets in Mobility-on-Demand Systems
按需移动系统中混合车队的实时控制
Analysis and Control of Autonomous Mobility-on-Demand Systems
  • DOI:
    10.1146/annurev-control-042920-012811
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Zardini;Nicolas Lanzetti;M. Pavone;E. Frazzoli
  • 通讯作者:
    G. Zardini;Nicolas Lanzetti;M. Pavone;E. Frazzoli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Pavone其他文献

Contingency Planning Using Bi-level Markov Decision Processes for Space Missions
使用双层马尔可夫决策过程进行太空任务的应急计划
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Somrita Banerjee;Edward Balaban;Mark Shirley;Kevin Bradner;Marco Pavone
  • 通讯作者:
    Marco Pavone
On the hyperbolic limit points of groups acting on hyperbolic spaces
RuleFuser: Injecting Rules in Evidential Networks for Robust Out-of-Distribution Trajectory Prediction
RuleFuser:在证据网络中注入规则以实现鲁棒的分布外轨迹预测
  • DOI:
    10.48550/arxiv.2405.11139
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jay Patrikar;Sushant Veer;Apoorva Sharma;Marco Pavone;Sebastian Scherer
  • 通讯作者:
    Sebastian Scherer
Subset sums and block designs in a finite vector space
  • DOI:
    10.1007/s10623-023-01213-9
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Pavone
  • 通讯作者:
    Marco Pavone
Benchmarking the Operation of Quantum Heuristics and Ising Machines: Scoring Parameter Setting Strategies on Optimization Applications
量子启发式和 Ising 机的运行基准测试:优化应用的参数设置策略评分
  • DOI:
    10.48550/arxiv.2402.10255
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. E. B. Neira;Robin Brown;Pratik Sathe;Filip Wudarski;Marco Pavone;E. Rieffel;Davide Venturelli
  • 通讯作者:
    Davide Venturelli

Marco Pavone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Pavone', 18)}}的其他基金

CPS: Medium: Collaborative Research: Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
CPS:中:协作研究:基于优化的规划和控制以确保自主:概括自主空间任务的见解
  • 批准号:
    1931815
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: Models and System-Level Coordination Algorithms for Power-in-the-Loop Autonomous Mobility-on-Demand Systems
CPS:小型:协作研究:功率在环自主按需移动系统的模型和系统级协调算法
  • 批准号:
    1837135
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Synergetic Drone Delivery Network in Metropolis
NRI:INT:COLLAB:大都市的协同无人机交付网络
  • 批准号:
    1830554
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
  • 批准号:
    EP/X038548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
  • 批准号:
    EP/X038351/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
The role of microbes in driving productivity and carbon fixation in seaweeds
微生物在提高海藻生产力和碳固定方面的作用
  • 批准号:
    2329475
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
  • 批准号:
    23K20955
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
  • 批准号:
    2331163
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: Safe Driving Routing Tool
I-Corps:安全驾驶路线工具
  • 批准号:
    2349882
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Driving Innovation Responsibly: Commercialising CAV Services in the Scottish Highlands and Islands
负责任地推动创新:在苏格兰高地和岛屿实现 CAV 服务的商业化
  • 批准号:
    10085345
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Legacy Department of Trade & Industry
SWEET SUCCESS: Driving net zero transition by accelerating bio-energy (sugarcane) production in South Africa
甜蜜的成功:通过加速南非生物能源(甘蔗)生产推动净零转型
  • 批准号:
    10104991
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Demonstrator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了