CPS: Medium: Collaborative Research: Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions

CPS:中:协作研究:基于优化的规划和控制以确保自主:概括自主空间任务的见解

基本信息

  • 批准号:
    1931815
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Over the last three decades we have witnessed historic missions to Mars where unmanned space vehicles successfully landed on and explored the Martian surface in search of evidence of past life. Recently reusable rockets have captured the public's imagination by delivering payloads to orbit and then landing safely back on Earth. A common requirement for these space vehicles is that they must be operated autonomously during the atmospheric entry, descent, and landing (EDL). Furthermore, the first time they are ever tested as a fully integrated system is during the actual mission. This makes EDL extremely challenging and risky. A key technology that has enabled these recent successful space missions is the onboard software that controls the vehicle's motion during EDL, which must work properly under all expected variations in the mission conditions. Motivated by these effective point-design solutions from aerospace engineering, our research aims to develop a unified algorithmic framework for motion planning and control for a large class of Earth-based autonomous vehicles that operate in challenging environments with increasingly complex performance requirements. Applications include autonomous aerial, ground, and underwater vehicles serving many safety critical tasks in, for example, search and rescue, disaster relief, terrain mapping and monitoring, and toxic spill cleanup applications to name few.Our main hypothesis is that optimization-based motion planning and control provides an effective and unifying mathematical framework that is able to handle the autonomy problems encountered in space applications and this framework can be generalized to a large variety of autonomous vehicles. Our project aims to build this optimization-based framework by leveraging invaluable insights and experiences from NASA's flagship missions to Mars. These missions had to succeed during their first attempt and any failure would have led to catastrophic results, i.e., there was no margin for error. Hence Mars landing can be considered a prototypical benchmark problem, as it encompasses complexities that one would also face with other (Earth-based) autonomous vehicles: switching between a variety of operational modes; limited fuel, power, and mission time; state and control constraints; and uncertainties in the situational awareness, sensing, actuation, vehicle dynamics, and environment. Our project aims to provide algorithmic foundations for optimization-based motion planning and control. It has both a theoretical component to produce fundamental results that can be used to build trustworthy algorithms and a comprehensive experimental component to produce the empirical evidence necessary to evaluate these algorithms on real-world examples, i.e., autonomous quad-rotors and underwater vehicles. Our research team is assembled to build on these lessons learned in space applications and to develop optimization-based planning and control methods that can seamlessly be transitioned to practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的三十年里,我们目睹了历史性的火星任务,无人驾驶的太空飞行器成功地降落在火星表面并探索火星表面,寻找过去生命的证据。最近,可重复使用的火箭通过将有效载荷送入轨道,然后安全返回地球,吸引了公众的想象力。对这些航天器的一个共同要求是,它们必须在进入大气层、下降和着陆(EDL)期间自主操作。此外,它们第一次作为一个完全集成的系统进行测试是在实际使命期间。这使得EDL极具挑战性和风险。使这些最近成功的太空任务成为可能的一项关键技术是在EDL期间控制飞行器运动的机载软件,该软件必须在使命条件的所有预期变化下正常工作。 在航空航天工程这些有效的点设计解决方案的推动下,我们的研究旨在为大量在具有日益复杂的性能要求的挑战性环境中运行的地球自主车辆开发一个统一的运动规划和控制算法框架。应用包括自主空中、地面和水下航行器,用于许多安全关键任务,例如搜索和救援、救灾、地形测绘和监测,和有毒物质泄漏清理应用程序仅举几例。我们的主要假设是,优化-基于运动规划和控制的系统提供了一个有效的和统一的数学框架,它能够处理在空间应用中遇到的自主性问题,框架可以推广到各种各样的自动驾驶车辆。我们的项目旨在通过利用NASA火星旗舰任务的宝贵见解和经验来构建这个基于优化的框架。这些任务必须在第一次尝试时成功,任何失败都会导致灾难性的结果,即,没有犯错的余地。因此,火星着陆可以被认为是一个典型的基准问题,因为它包含了其他(地球上的)自动驾驶车辆也会面临的复杂性:在各种操作模式之间切换;有限的燃料,动力和使命时间;状态和控制约束;以及态势感知,传感,驱动,车辆动力学和环境中的不确定性。我们的项目旨在为基于优化的运动规划和控制提供算法基础。它既有一个理论组成部分,以产生可用于构建值得信赖的算法的基本结果,也有一个全面的实验组成部分,以产生在现实世界的例子中评估这些算法所需的经验证据,即,自主四旋翼和水下航行器。 我们的研究团队将在空间应用中吸取的经验教训的基础上,开发基于优化的规划和控制方法,这些方法可以无缝地过渡到实践中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential Convex Programming For Non-Linear Stochastic Optimal Control
  • DOI:
    10.1051/cocv/2022060
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riccardo Bonalli;T. Lew;M. Pavone
  • 通讯作者:
    Riccardo Bonalli;T. Lew;M. Pavone
Composable Geometric Motion Policies using Multi-Task Pullback Bundle Dynamical Systems
使用多任务回拉束动力系统的可组合几何运动策略
Collision-Inclusive Trajectory Optimization for Free-Flying Spacecraft
自由飞行航天器的包含碰撞的轨迹优化
  • DOI:
    10.2514/1.g004788
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mote, Mark;Egerstedt, Magnus;Feron, Eric;Bylard, Andrew;Pavone, Marco
  • 通讯作者:
    Pavone, Marco
Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization
  • DOI:
    10.23919/ecc51009.2020.9143595
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lew;Riccardo Bonalli;M. Pavone
  • 通讯作者:
    T. Lew;Riccardo Bonalli;M. Pavone
Analysis of Theoretical and Numerical Properties of Sequential Convex Programming for Continuous-Time Optimal Control
连续时间最优控制的顺序凸规划的理论和数值性质分析
  • DOI:
    10.1109/tac.2022.3207865
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Bonalli, Riccardo;Lew, Thomas;Pavone, Marco
  • 通讯作者:
    Pavone, Marco
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Pavone其他文献

Contingency Planning Using Bi-level Markov Decision Processes for Space Missions
使用双层马尔可夫决策过程进行太空任务的应急计划
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Somrita Banerjee;Edward Balaban;Mark Shirley;Kevin Bradner;Marco Pavone
  • 通讯作者:
    Marco Pavone
On the hyperbolic limit points of groups acting on hyperbolic spaces
RuleFuser: Injecting Rules in Evidential Networks for Robust Out-of-Distribution Trajectory Prediction
RuleFuser:在证据网络中注入规则以实现鲁棒的分布外轨迹预测
  • DOI:
    10.48550/arxiv.2405.11139
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jay Patrikar;Sushant Veer;Apoorva Sharma;Marco Pavone;Sebastian Scherer
  • 通讯作者:
    Sebastian Scherer
Subset sums and block designs in a finite vector space
  • DOI:
    10.1007/s10623-023-01213-9
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Pavone
  • 通讯作者:
    Marco Pavone
Benchmarking the Operation of Quantum Heuristics and Ising Machines: Scoring Parameter Setting Strategies on Optimization Applications
量子启发式和 Ising 机的运行基准测试:优化应用的参数设置策略评分
  • DOI:
    10.48550/arxiv.2402.10255
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. E. B. Neira;Robin Brown;Pratik Sathe;Filip Wudarski;Marco Pavone;E. Rieffel;Davide Venturelli
  • 通讯作者:
    Davide Venturelli

Marco Pavone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Pavone', 18)}}的其他基金

CPS: Small: Collaborative Research: Models and System-Level Coordination Algorithms for Power-in-the-Loop Autonomous Mobility-on-Demand Systems
CPS:小型:协作研究:功率在环自主按需移动系统的模型和系统级协调算法
  • 批准号:
    1837135
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Synergetic Drone Delivery Network in Metropolis
NRI:INT:COLLAB:大都市的协同无人机交付网络
  • 批准号:
    1830554
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Driving the Future: Models and Control Methods to Coordinate Fleets of Self-Driving Vehicles in Future Transportation Networks
职业:驾驶未来:协调未来交通网络中自动驾驶车队的模型和控制方法
  • 批准号:
    1454737
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了