Social Networks, Transactive Memory and Team Performance: An Experimental Investigation
社交网络、交互记忆和团队绩效:实验研究
基本信息
- 批准号:1459963
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Teams are increasingly used in a variety of organizational contexts, including education, health care, government and for-profit firms. Information about how to increase their effectiveness promises to improve the performance and competitiveness of organizations in the U.S. and the well being of their members. Our proposed research has implications not only for teams in traditional work settings but also in new emerging settings such as distributed work teams and online communities. We identify the patterns of communication that lead to the strongest transactive memory and the highest team performance. Thus, the research will result in information that team members and leaders can use to improve their team's performance. In addition, the development of a behavioral measure of TMS would enable researchers to analyze TMS in large teams and geographically distributed contexts, which are becoming increasingly prevalent in organizations and online communities around the world. All together, the results have the potential to advance our understanding of team collaboration, team formation, communication networks and team performance.The research examines the effects of communication networks on transactive memory system development and team performance. A transactive memory system (TMS) is a collective system for encoding, storing and retrieving information. Teams with well-developed TMSs have been found to perform better across a variety of tasks compared to teams lacking TMSs. Known as systems of "who knows what," a TMS emerges through communications and interactions among team members as they learn and rely on each other's skills and knowledge. Although a TMS hinges on communication and interaction, very little research has been conducted on how communication networks affect a group's TMS. Communication networks constrain or enable communication within a team and thus potentially alter the development of TMS. Our research investigates the characteristics of communication networks that enhance the development of TMS in a series of studies incorporating complementary laboratory and archival methods. First, we manipulate the communication networks that exist within teams in an experiment to examine the effects of network characteristics on the team's TMS and performance. We investigate two dimensions of team performance: the number of errors and creativity. Second, because in many contexts individuals choose their own networks and/or their positions within the network, we compare the effects of networks and position assignments that are imposed by the experimenter to those that are chosen by participants. This enables us to determine if effects observed are due to the communication network itself or due to participants' enactment of the network. By manipulating the networks and using random assignment to networks and to positions within the networks, we are able to make causal statements about the effects of network characteristics on TMS development and team performance. Third, using data from our experiments, we will develop and refine a new unobtrusive, behavioral measure of TMS. This measure will be applied to data from real teams who use online networks for large-scale technology-mediated projects. Following the validation of this new TMS measure, we will examine how it relates to performance for large online teams.
团队越来越多地应用于各种组织环境中,包括教育、医疗保健、政府和营利性公司。 有关如何提高其有效性的信息有望提高美国组织的绩效和竞争力及其成员的福祉。我们提出的研究不仅对传统工作环境中的团队有影响,而且对分布式工作团队和在线社区等新兴环境也有影响。我们确定了能够带来最强交互记忆和最高团队绩效的沟通模式。因此,研究将产生团队成员和领导者可以用来提高团队绩效的信息。此外,TMS 行为测量的开发将使研究人员能够分析大型团队和地理分布环境中的 TMS,这些在世界各地的组织和在线社区中变得越来越普遍。总而言之,这些结果有可能增进我们对团队协作、团队组建、通信网络和团队绩效的理解。该研究探讨了通信网络对交互记忆系统开发和团队绩效的影响。交互存储系统(TMS)是一个用于编码、存储和检索信息的集体系统。人们发现,与缺乏 TMS 的团队相比,拥有完善 TMS 的团队在各种任务中表现得更好。 TMS 被称为“谁知道什么”的系统,是通过团队成员之间的沟通和互动而出现的,因为他们学习并依赖彼此的技能和知识。 尽管 TMS 取决于沟通和互动,但关于沟通网络如何影响群体 TMS 的研究却很少。通信网络限制或促进团队内部的通信,从而可能改变 TMS 的发展。我们的研究通过一系列结合互补的实验室和档案方法的研究,调查了促进 TMS 发展的通信网络的特征。首先,我们在实验中操纵团队内存在的通信网络,以检查网络特征对团队 TMS 和绩效的影响。我们研究团队绩效的两个维度:错误数量和创造力。其次,由于在许多情况下,个人选择自己的网络和/或网络中的位置,因此我们将实验者强加的网络和位置分配的效果与参与者选择的网络和位置分配的效果进行比较。 这使我们能够确定观察到的影响是由于通信网络本身还是由于参与者对网络的制定造成的。通过操纵网络并对网络和网络内的位置进行随机分配,我们能够对网络特征对 TMS 开发和团队绩效的影响做出因果陈述。 第三,利用我们的实验数据,我们将开发和完善一种新的不引人注目的 TMS 行为测量方法。 这项措施将应用于来自使用在线网络进行大型技术介导项目的真实团队的数据。在验证这一新的 TMS 衡量标准后,我们将研究它与大型在线团队绩效的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Argote其他文献
Organizational Learning: Creating, Retaining and Transferring Knowledge
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Linda Argote - 通讯作者:
Linda Argote
Linda Argote的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Argote', 18)}}的其他基金
Doctoral Dissertation Research in Science of Science and Innovation Policy: Personnel Movement, Knowledge Transfer and Innovation in the Laser Industry
科学与创新政策博士论文研究:激光产业的人员流动、知识转移与创新
- 批准号:
1360210 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Learning Effects in Work Teams: Transactive Memory Systems and Team Performance
工作团队中的学习效果:交互记忆系统和团队绩效
- 批准号:
0823283 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The Effects of Offshoring on Innovation, Learning, and Knowledge Transfer
离岸外包对创新、学习和知识转移的影响
- 批准号:
0622863 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference on Creating, Retaining, and Transferring Knowledge in Organizations, Carnegie Mellon University, September 7 - 9, 2001
关于在组织中创造、保留和转移知识的会议,卡内基梅隆大学,2001 年 9 月 7 日至 9 日
- 批准号:
0004283 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The Acquisition, Retention, and Transfer of Knowledge about Quality and Productivity in Manufacturing
制造业质量和生产力知识的获取、保留和转移
- 批准号:
9009930 - 财政年份:1990
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Investigating the Effects of Advanced Manufacturing Technologies (Technology Assessment)
研究先进制造技术的影响(技术评估)
- 批准号:
8409991 - 财政年份:1984
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
军民两用即兴网(Ad Hoc Networks)的研究
- 批准号:60372093
- 批准年份:2003
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
The International Political Thought of Women’s Regional Networks
妇女区域网络的国际政治思想
- 批准号:
DE240101244 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
- 批准号:
FT230100549 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
ARC Future Fellowships
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
- 批准号:
EP/Y003144/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322900 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




