CRII: SHF: Automatic Extraction of Error-Handling Specifications in Systems Software

CRII:SHF:系统软件中错误处理规范的自动提取

基本信息

  • 批准号:
    1464439
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-15 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Software error handling is the process of detecting and responding tothe occurrence of errors during the execution of a program. Ideally,whenever a runtime error occurs, software systems should respondaccording to the programmer?s intent. Unfortunately, that is often notthe case. Error-handling code is difficult to write, and tends to bepoorly understood, poorly documented, and poorly tested.Unsurprisingly, error-handling code is often buggy. Bugs in softwareerror handlers are some of the most pervasive, dangerous, anddifficult to detect bugs. Incorrect error-handling is particularlyalarming in systems software (e.g., the operating system) because userapplications depend on the reliability of systems software. Thisresearch aims to gather a better understanding of error handling insystems software through automatic inference of error-handlingspecifications.Error-handling specifications describe how the system detects andrecovers from errors. This research applies static program analysistechniques to automatically infer error-handling specifications insystems software. This task is particularly challenging becausesystems software implements numerous failure policies, anderror-handling code is often diffused through the system. Furthermore,the analysis of such large code bases often faces scalabilityproblems. Understanding existing error-handling strategies is thefirst step to ensure systems software is reliable. This understandingalso has the potential to lead to the development of newerror-handling mechanisms, and new programming language support forerror handling. Both of these could have a significant impact onsoftware reliability beyond systems software.
软件错误处理是在程序执行过程中检测和响应错误发生的过程。理想情况下,无论何时发生运行时错误,软件系统都应该根据程序员的要求做出响应。年代的意图。不幸的是,情况往往并非如此。错误处理代码很难编写,而且往往难以理解、文档编制和测试。不出所料,错误处理代码经常有bug。软件错误处理程序中的错误是最普遍、最危险、最难以检测的错误。不正确的错误处理在系统软件(如操作系统)中尤其值得警惕,因为用户应用程序依赖于系统软件的可靠性。本研究旨在透过对错误处理规范的自动推理,更好地了解系统软件中的错误处理。错误处理规范描述了系统如何检测错误并从错误中恢复。本研究应用静态程序分析技术来自动推断系统软件中的错误处理规范。这项任务特别具有挑战性,因为系统软件实现了许多故障策略,并且错误处理代码经常在整个系统中扩散。此外,对如此大型代码库的分析经常面临可伸缩性问题。了解现有的错误处理策略是确保系统软件可靠的第一步。这种理解也有可能导致开发新的错误处理机制,以及对错误处理的新编程语言支持。这两种情况都可能对系统软件以外的软件可靠性产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cindy Rubio Gonzalez其他文献

Cindy Rubio Gonzalez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cindy Rubio Gonzalez', 18)}}的其他基金

Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
  • 批准号:
    2319663
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: ScaleStuds: Foundations for Correctness Checkability and Performance Predictability of Systems at Scale
合作研究:PPoSS:大型:ScaleStuds:大规模系统正确性可检查性和性能可预测性的基础
  • 批准号:
    2119348
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CCRI: ENS: BugSwarm: Enhancing an Infrastructure and Dataset to Support the Software Engineering Research Community
CCRI:ENS:BugSwarm:增强基础设施和数据集以支持软件工程研究社区
  • 批准号:
    2016735
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Combating Numerical Bugs for Reliable and Efficient Software Systems
职业:理解和对抗数字错误以实现可靠和高效的软件系统
  • 批准号:
    1750983
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CI-New: BugSwarm: A Large-Scale Repository of Replicable Defects, Tests, and Patches to Support the Software Engineering Research Community
CI-New:BugSwarm:支持软件工程研究社区的可复制缺陷、测试和补丁的大型存储库
  • 批准号:
    1629976
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
  • 批准号:
    2107257
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
  • 批准号:
    2107042
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
  • 批准号:
    2110397
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic, adaptive and massive parallel data processing on GPU/RDMA clusters in both synchronous and asynchronous modes
SHF:小型:在同步和异步模式下在 GPU/RDMA 集群上自动、自适应和大规模并行数据处理
  • 批准号:
    2005884
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Generation of Cache Coherent Memory Systems for Multicore Processors
SHF:小型:自动生成多核处理器的缓存一致性内存系统
  • 批准号:
    2002737
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Qualitative and Quantitative Verification of CUDA Code
SHF:Small:CUDA代码的自动定性和定量验证
  • 批准号:
    2007784
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Exploration and Analysis of Software Performance Responses
SHF:小型:软件性能响应的自动探索和分析
  • 批准号:
    1908870
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: SMALL: DockerizeME: Automatic Inference and Repair of Computing Environments
SHF:SMALL:DockerizeME:计算环境的自动推理和修复
  • 批准号:
    1814798
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了