CAREER: Understanding and Combating Numerical Bugs for Reliable and Efficient Software Systems
职业:理解和对抗数字错误以实现可靠和高效的软件系统
基本信息
- 批准号:1750983
- 负责人:
- 金额:$ 53.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of numerical software has grown rapidly over the past few years. From machine learning to safety-critical systems, a large variety of applications today make heavy use of floating point. Unfortunately, floating point introduces imprecision in numericalcalculations. Analyzing, testing, and optimizing floating-point programs are difficult tasks. There is a large variety of numerical errors that can occur in such programs, including extreme sensitivity to roundoff, incorrectly handled exceptions, and nonreproducibility. This has led to numerous software bugs that have caused catastrophic failures. The goal of this research is to understand and combat numerical bugs. The intellectual merits are to advance the state of the art in analysis, testing and optimization of numerical software, and in extending these techniques to new domains beyond scientific applications. The importance of the research lies in the impact of the developed techniques and tools on improving the reliability and performance of real-world numerical programs, on which many other applications depend.This research develops program analysis techniques and tools to (1) find frequent and impactful numerical bugs in programs, (2) proposefixes for these bugs, and (3) optimize numerical programs in different application domains to improve their performance. The research is driven by empirical studies that encompass several aspects of numerical software. First, a large-scale empirical study of numerical software is conducted to categorize real-world numerical bugs and their fixes. Second, an empirical study of test suites for numerical software is conducted to determine the effectiveness of testing in real-world numerical software. Based on the observations made through these empirical studies, a series of dynamic and static analyses are designed to detect and fix a variety of numerical bugs. These analyses are made available as part of an analysis and testing framework for numerical software. Novel precision tuning techniques are developed to enable scalable optimizations that lead to higher speedups, and to extend the scope of precision tuning to new application domains such as machine learning. The research has strong broader impacts in education and outreach. These include the development of new courses on software engineering and testing with a focus on numerical software, a Computer Science summer boot camp, and a mentoring program for underrepresented minorities especially focused on Latino students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,数字软件的使用迅速增长。从机器学习到安全关键型系统,当今各种各样的应用程序都大量使用浮点。不幸的是,浮点数在数值计算中引入了不精确性。分析、测试和优化浮点程序是一项艰巨的任务。在这样的程序中可能会出现各种各样的数值错误,包括对循环的极端敏感性,错误处理的异常和不可再现性。这导致了许多软件错误,导致了灾难性的故障。这项研究的目的是了解和打击数字错误。智力的优点是推进最先进的分析,测试和优化的数值软件,并在扩展这些技术到新的领域超出科学应用。研究的重要性在于所开发的技术和工具对提高真实世界数值程序的可靠性和性能的影响,许多其他应用程序依赖于这些技术和工具。这项研究开发了程序分析技术和工具,以(1)发现程序中频繁和有影响力的数值错误,(2)提出这些错误的修复方法,(3)优化不同应用领域的数值计算程序,提高其性能。这项研究是由实证研究驱动的,包括数值软件的几个方面。首先,数值软件进行了大规模的实证研究,分类现实世界的数值错误和他们的修复。其次,数值软件测试套件进行实证研究,以确定在现实世界的数值软件测试的有效性。基于这些实证研究所取得的观察,一系列的动态和静态分析,旨在检测和修复各种数值错误。这些分析可作为数值软件的分析和测试框架的一部分。开发新型精确调优技术是为了实现可扩展的优化,从而实现更高的加速比,并将精确调优的范围扩展到机器学习等新应用领域。这项研究在教育和推广方面产生了广泛的影响。其中包括开发软件工程和测试的新课程,重点是数字软件,计算机科学夏令营靴子,并为代表性不足的少数民族,特别是拉丁美洲学生的辅导计划。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Generation of Error-Inducing Floating-Point Inputs via Symbolic Execution
- DOI:10.1145/3377811.3380359
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Cindy Rubio-González
- 通讯作者:Hui Guo;Cindy Rubio-González
PLINER: Isolating Lines of Floating-Point Code for Compiler-Induced Variability
- DOI:10.1109/sc41405.2020.00053
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Hui Guo;I. Laguna;Cindy Rubio-González
- 通讯作者:Hui Guo;I. Laguna;Cindy Rubio-González
Exploiting community structure for floating-point precision tuning
- DOI:10.1145/3213846.3213862
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Cindy Rubio-González
- 通讯作者:Hui Guo;Cindy Rubio-González
Effective error-specification inference via domain-knowledge expansion
- DOI:10.1145/3338906.3338960
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Daniel DeFreez;Haaken Martinson Baldwin;Cindy Rubio-González;Aditya V. Thakur
- 通讯作者:Daniel DeFreez;Haaken Martinson Baldwin;Cindy Rubio-González;Aditya V. Thakur
Detecting and reproducing error-code propagation bugs in MPI implementations
- DOI:10.1145/3332466.3374515
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Daniel DeFreez;Antara Bhowmick;I. Laguna;Cindy Rubio-González
- 通讯作者:Daniel DeFreez;Antara Bhowmick;I. Laguna;Cindy Rubio-González
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cindy Rubio Gonzalez其他文献
Cindy Rubio Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cindy Rubio Gonzalez', 18)}}的其他基金
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319663 - 财政年份:2023
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: ScaleStuds: Foundations for Correctness Checkability and Performance Predictability of Systems at Scale
合作研究:PPoSS:大型:ScaleStuds:大规模系统正确性可检查性和性能可预测性的基础
- 批准号:
2119348 - 财政年份:2021
- 资助金额:
$ 53.74万 - 项目类别:
Continuing Grant
CCRI: ENS: BugSwarm: Enhancing an Infrastructure and Dataset to Support the Software Engineering Research Community
CCRI:ENS:BugSwarm:增强基础设施和数据集以支持软件工程研究社区
- 批准号:
2016735 - 财政年份:2020
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
CI-New: BugSwarm: A Large-Scale Repository of Replicable Defects, Tests, and Patches to Support the Software Engineering Research Community
CI-New:BugSwarm:支持软件工程研究社区的可复制缺陷、测试和补丁的大型存储库
- 批准号:
1629976 - 财政年份:2016
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
CRII: SHF: Automatic Extraction of Error-Handling Specifications in Systems Software
CRII:SHF:系统软件中错误处理规范的自动提取
- 批准号:
1464439 - 财政年份:2015
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
- 批准号:
2209922 - 财政年份:2021
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029858 - 财政年份:2020
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
- 批准号:
2007423 - 财政年份:2020
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029875 - 财政年份:2020
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
- 批准号:
2007828 - 财政年份:2020
- 资助金额:
$ 53.74万 - 项目类别:
Standard Grant
Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
- 批准号:
10219080 - 财政年份:2018
- 资助金额:
$ 53.74万 - 项目类别:
Mechanistic understanding of cell surface protein subunit vaccine candidates for combating Trypanosome infections in cattle
对抗牛锥虫感染的细胞表面蛋白亚基候选疫苗的机制理解
- 批准号:
2118529 - 财政年份:2018
- 资助金额:
$ 53.74万 - 项目类别:
Studentship
Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
- 批准号:
9761971 - 财政年份:2018
- 资助金额:
$ 53.74万 - 项目类别:
Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
- 批准号:
10449341 - 财政年份:2018
- 资助金额:
$ 53.74万 - 项目类别:
Combating MRSA; combining and increasing our understanding on colonisation, transmission and reservoirs will lead to control of infections by MRSA
对抗耐甲氧西林金黄色葡萄球菌(MRSA);
- 批准号:
MR/P028322/1 - 财政年份:2017
- 资助金额:
$ 53.74万 - 项目类别:
Research Grant