Spherical subalgebras of quantized enveloping algebras - structure theory and classification problems
量化包络代数的球面子代数 - 结构理论和分类问题
基本信息
- 批准号:219205634
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spherical subgroups of Lie or algebraic groups have been investigated since the 1970ies because of their interesting geometric, algebraic, combinatorial and representation theoretical properties. Nowadays generalizations like spherical varieties are in the focus of interest. For another generalization towards quantum groups one first has to find the proper setting: an obvious description via Hopf subalgebras of Hopf algebras fails due to the lack of sufficiently many Hopf subalgebras. Based on the case-by-case construction of quantum symmetric spaces in the 1990ies and on recent developments on right coideal subalgebras of quantized enveloping algebras, now we are in the position to develop a substantial structure theory of spherical subalgebras of quantized enveloping algebras using right coideal subalgebras and to initiate classification projects. (In the classical, cocommutative setting right coideal subalgebras are automatically Hopf subalgebras.) It is a very interesting question, to which extent the classical and the quantum theories and examples are analogous and whether one can observe significant new aspects.
李群或代数群的球子群自20世纪70年代以来一直被研究,因为它们具有有趣的几何、代数、组合和表示理论性质。如今,像球形变体这样的泛化是人们感兴趣的焦点。对于量子群的另一个推广,首先必须找到合适的设置:由于缺乏足够多的Hopf子代数,用Hopf子代数来描述Hopf代数的明显方法是失败的。在90年代量子对称空间的逐个构造和量子化包络代数的右上理想子代数的最新发展的基础上,我们现在能够利用右上理想子代数建立量子化包络代数的球子代数的实质结构理论,并启动分类方案。(在经典的余交换环境下,右上理想子代数自动成为Hopf子代数。)这是一个非常有趣的问题,经典理论和量子理论和例子在多大程度上是相似的,一个人是否可以观察到有意义的新方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. István Heckenberger其他文献
Professor Dr. István Heckenberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. István Heckenberger', 18)}}的其他基金
Left coideal subalgebras of Nichols algebras
尼科尔斯代数的左余理想子代数
- 批准号:
439450181 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Computer assisted investigation of solvable Lie subalgebras of classical algebras
经典代数可解李子代数的计算机辅助研究
- 批准号:
572773-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Embeddings of Lie Subalgebras
李子代数的嵌入
- 批准号:
562156-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Symmetric invariants, Poisson-commutative subalgebras, and interactions with representation theory
对称不变量、泊松交换子代数以及与表示论的相互作用
- 批准号:
454900253 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Heisenberg Grants
Left coideal subalgebras of Nichols algebras
尼科尔斯代数的左余理想子代数
- 批准号:
439450181 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Solvable Subalgebras of Classical Lie Algebras
经典李代数的可解子代数
- 批准号:
RGPIN-2019-06817 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1821185 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1502497 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Operator algebras and hereditary subalgebras; visit of David Blecher.
算子代数和遗传子代数;
- 批准号:
EP/K019546/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant