Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
基本信息
- 批准号:1502497
- 负责人:
- 金额:$ 12.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project lies in the intersection of three fields of mathematics: algebraic representation theory, integrable systems, and geometric representation theory. The former two branches of mathematics originate from physics, while the last deals with applications of purely algebraic concepts to geometry. Representation theory concerns the study of symmetries of a vector space such as our three-dimensional space (more generally, an infinite dimensional space) with additional structures. These symmetries can be often thought of as algebraic structures. The following two cases are of particular interest: (1) the case of pair-wise commuting symmetries, when sufficiently many exist, is of central importance in the study of integrable systems; (2) the case when the underlying vector space arises from geometric objects is of central importance in geometric representation theory. In this project the principal investigator plans to explore these concepts in the particular cases of algebras known as quantum toroidal algebras and affine Yangians. These associative algebras can be viewed as deformations of Lie algebras and provide generalizations of the classical quantum affine algebras and Yangians that have been studied extensively in recent decades. This project is devoted to the study of quantum toroidal algebras and affine Yangians. The PI's plan is as follows: (1) Develop shuffle realizations of all quantum toroidal/affine algebras of ADE type. (2) Unify all known different constructions of their representations and provide a wider class of shuffle type modules. (3) Study the maximal commutative subalgebras of quantum toroidal algebras via the shuffle realization, and develop a new (shuffle) approach to the well-known Bethe ansatz problem, concerning diagonalization of such maximal commutative subalgebras in interesting classes of representations. (4) Relate the aforementioned maximal commutative subalgebras to the study of quantum cohomology and quantum K-theory of Nakajima quiver varieties and affine Laumon spaces. (5) Generalize all the above to the additive case of affine Yangians. (6) Study quantizations of the shift of the argument algebras corresponding to all vertices of the "degeneration" rhombus and describe the relation of these algebras to the right hand sides of the KZ equation and Casimir equation rhombi.
这个研究项目是在数学的三个领域的交叉:代数表示理论,可积系统,几何表示理论。数学的前两个分支起源于物理学,而最后一个分支则涉及纯代数概念在几何学中的应用。表示论关注研究向量空间的对称性,例如我们的三维空间(更一般地说,无限维空间)。这些对称性通常可以被认为是代数结构。以下两种情况特别令人感兴趣:(1)成对交换对称的情况,当存在足够多的对称时,在可积系统的研究中具有中心重要性;(2)基础向量空间由几何对象产生的情况在几何表示论中具有中心重要性。在这个项目中,主要研究者计划在称为量子环形代数和仿射杨吉安的特殊代数情况下探索这些概念。这些结合代数可以看作是李代数的变形,并提供了近几十年来广泛研究的经典量子仿射代数和Yangians的推广。本项目致力于量子环面代数和仿射杨吉安的研究。PI的计划如下:(1)开发ADE型的所有量子环面/仿射代数的洗牌实现。(2)统一所有已知的不同结构的表示,并提供了更广泛的一类洗牌型模块。(3)通过shuffle实现研究了量子环面代数的极大交换子代数,并发展了一种新的(shuffle)方法来解决著名的Bethe代数问题,该问题涉及在有趣的表示类中的极大交换子代数的对角化. (4)将上述极大交换子代数与Nakajima簇和仿射Laumon空间的量子上同调和量子K-理论的研究联系起来。(5)将上述所有推广到仿射杨格数的加法情形。(6)研究了退化菱形所有顶点所对应的辐角代数的移位的量子化,并描述了这些代数与KZ方程和Casimir方程菱形右端的关系.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleksandr Tsymbaliuk其他文献
Oleksandr Tsymbaliuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleksandr Tsymbaliuk', 18)}}的其他基金
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
$ 12.55万 - 项目类别:
Standard Grant
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
- 批准号:
2037602 - 财政年份:2020
- 资助金额:
$ 12.55万 - 项目类别:
Standard Grant
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
- 批准号:
2001247 - 财政年份:2020
- 资助金额:
$ 12.55万 - 项目类别:
Standard Grant
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1821185 - 财政年份:2017
- 资助金额:
$ 12.55万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 12.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computer assisted investigation of solvable Lie subalgebras of classical algebras
经典代数可解李子代数的计算机辅助研究
- 批准号:
572773-2022 - 财政年份:2022
- 资助金额:
$ 12.55万 - 项目类别:
University Undergraduate Student Research Awards
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
$ 12.55万 - 项目类别:
Studentship
Embeddings of Lie Subalgebras
李子代数的嵌入
- 批准号:
562156-2021 - 财政年份:2021
- 资助金额:
$ 12.55万 - 项目类别:
University Undergraduate Student Research Awards
Symmetric invariants, Poisson-commutative subalgebras, and interactions with representation theory
对称不变量、泊松交换子代数以及与表示论的相互作用
- 批准号:
454900253 - 财政年份:2020
- 资助金额:
$ 12.55万 - 项目类别:
Heisenberg Grants
Solvable Subalgebras of Classical Lie Algebras
经典李代数的可解子代数
- 批准号:
RGPIN-2019-06817 - 财政年份:2019
- 资助金额:
$ 12.55万 - 项目类别:
Discovery Grants Program - Individual
Left coideal subalgebras of Nichols algebras
尼科尔斯代数的左余理想子代数
- 批准号:
439450181 - 财政年份:2019
- 资助金额:
$ 12.55万 - 项目类别:
Research Grants
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1821185 - 财政年份:2017
- 资助金额:
$ 12.55万 - 项目类别:
Standard Grant
Operator algebras and hereditary subalgebras; visit of David Blecher.
算子代数和遗传子代数;
- 批准号:
EP/K019546/1 - 财政年份:2013
- 资助金额:
$ 12.55万 - 项目类别:
Research Grant
Deformation of Lie subalgebras and systems of hypergeometric equations
李子代数和超几何方程组的变形
- 批准号:
24540002 - 财政年份:2012
- 资助金额:
$ 12.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)