Solvable Subalgebras of Classical Lie Algebras
经典李代数的可解子代数
基本信息
- 批准号:RGPIN-2019-06817
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The everyday concept of symmetry is extremely important across the sciences. In mathematics, it is studied through the concept of groups, for which there is a highly developed theory. In many cases, especially those of interest in physics, to a symmetry group it is possible to associate what is called a Lie algebra. This related object contains most of the same information as the original group, but in a form that is easier to work with for many purposes. Specifically, applications to quantum mechanics are frequently expressed in terms of Lie algebras rather than symmetry groups. ******One of the most familiar kinds of symmetries is rotation. Perhaps a little less striking, but just as familiar, is translation (moving something to a new position without rotating it). The group that combines these two types of symmetries is the Euclidean group; in a sense it describes the symmetries of ordinary geometry. The theory of relativity can best be expressed in terms of a different kind of geometry, and there is a corresponding group called the Poincaré group. These groups are fundamental in the study of nonrelativistic and relativistic physics, respectively. ******Their Lie algebras, the Euclidean and Poincaré algebras, contain much of the relevant information. They are both examples of what mathematicians call semidirect product algebras. This refers to the fact that each is constructed by combining two subalgebras: the rotations and translations in the Euclidean algebra, and their relativistic analogues in the Poincaré algebra. ******One of the big challenges in modern physics is “unification”, finding a theory which encompasses all the theories that account for different aspects of our physical universe. In mathematical terms, this raises the question of embedding one algebra into another. Roughly speaking, it is a matter of showing how the mathematical structure that describes one theory can be related to the structure that describes another. The extent to which this can or cannot be done in a consistent way has important consequences for the possibility of unifying the two theories. ******This research project is devoted to studying embeddings of Lie algebras, including semidirect product algebras, into other Lie algebras. Given two Lie algebras, there is the initial question whether the first can be embedded in the second. If it can, there is then the question of how many different ways it can be done.**
对称的日常概念在各个科学领域都极为重要。在数学中,它是通过群的概念来研究的,这是一个高度发达的理论。在许多情况下,特别是对物理感兴趣的情况下,可以将所谓的李代数与对称群联系起来。此相关对象包含与原始组相同的大部分信息,但其形式更易于用于许多目的。具体地说,量子力学的应用经常用李代数而不是对称群来表示。******最熟悉的一种对称是旋转。也许不那么引人注目,但同样熟悉的是平移(将某物移动到一个新的位置而不旋转它)。结合了这两种对称的群是欧几里得群;在某种意义上,它描述了普通几何的对称性。相对论可以最好地用另一种不同的几何来表达,并且有一个相应的群体叫做庞加莱群。这些群体分别是非相对论性和相对论性物理研究的基础。******他们的李代数,欧几里得代数和庞加莱代数,包含了很多相关的信息。它们都是数学家所说的半直积代数的例子。这是指这样一个事实,即每一个都是由两个子代数组合而成的:欧几里得代数中的旋转和平移,以及它们在庞加莱代数中的相对类似物。******现代物理学的一个重大挑战是“统一”,即找到一个涵盖所有理论的理论,这些理论解释了我们物理宇宙的不同方面。用数学术语来说,这就提出了将一个代数嵌入另一个代数的问题。粗略地说,这是一个展示描述一种理论的数学结构如何与描述另一种理论的结构相关联的问题。这在多大程度上能够或不能以一种一致的方式完成,对于统一这两种理论的可能性具有重要的影响。******本研究项目致力于研究李代数,包括半直积代数,在其他李代数中的嵌入。给定两个李代数,最初的问题是第一个李代数能否嵌入第二个李代数。如果可以,那么问题是有多少种不同的方法可以做到这一点
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Repka, Joe其他文献
Repka, Joe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Repka, Joe', 18)}}的其他基金
Structure and representations of semisimple Lie algebras and semidirect product Lie algebras
半单李代数和半直积李代数的结构和表示
- 批准号:
RGPIN-2015-04770 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation, mathematical physics, mathematical biology
群表示、数学物理、数学生物学
- 批准号:
3166-2009 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation, mathematical physics, mathematical biology
群表示、数学物理、数学生物学
- 批准号:
3166-2009 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation, mathematical physics, mathematical biology
群表示、数学物理、数学生物学
- 批准号:
3166-2009 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation, mathematical physics, mathematical biology
群表示、数学物理、数学生物学
- 批准号:
3166-2009 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation, mathematical physics, mathematical biology
群表示、数学物理、数学生物学
- 批准号:
3166-2009 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation and mathematical physics; mathematical biology
群表示和数学物理;
- 批准号:
3166-2004 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation and mathematical physics; mathematical biology
群表示和数学物理;
- 批准号:
3166-2004 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation and mathematical physics; mathematical biology
群表示和数学物理;
- 批准号:
3166-2004 - 财政年份:2006
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Group representation and mathematical physics; mathematical biology
群表示和数学物理;
- 批准号:
3166-2004 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computer assisted investigation of solvable Lie subalgebras of classical algebras
经典代数可解李子代数的计算机辅助研究
- 批准号:
572773-2022 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
University Undergraduate Student Research Awards
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Embeddings of Lie Subalgebras
李子代数的嵌入
- 批准号:
562156-2021 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
University Undergraduate Student Research Awards
Symmetric invariants, Poisson-commutative subalgebras, and interactions with representation theory
对称不变量、泊松交换子代数以及与表示论的相互作用
- 批准号:
454900253 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Heisenberg Grants
Left coideal subalgebras of Nichols algebras
尼科尔斯代数的左余理想子代数
- 批准号:
439450181 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Research Grants
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1821185 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
- 批准号:
1502497 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Operator algebras and hereditary subalgebras; visit of David Blecher.
算子代数和遗传子代数;
- 批准号:
EP/K019546/1 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Deformation of Lie subalgebras and systems of hypergeometric equations
李子代数和超几何方程组的变形
- 批准号:
24540002 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)