Investigations into the Abelian Defect Group Conjecture

阿贝尔缺陷群猜想的研究

基本信息

项目摘要

Representation theory of finite groups provides unified mathematical models for symmetry phenomena, by investigating linear actions of finite groups on finite-dimensional vector spaces over fields. Understanding the representation theory of a finite group G over a field k is equivalent to understanding the representation theory of its blocks, that is, the indecomposable direct factors, of the group algebra kG. Whilst the theory over fields of characteristic 0 is comparatively well understood, the picture changes drastically when working over fields of prime characteristic p. One of the central questions then is to what extent the ‚global‘ representation theory of G is already controlled by ‚local‘ data, that is, representations of p-subgroups of G and their normalizers. This area has been extremely active and rich in fascinating development in recent years. In his 1990 landmark paper, M. Broué conjectured that every block of kG with an abelian defect group has essentially the ‚same‘ representation theory as a block of a much smaller group algebra. The aim of this project is to make further progress on this long-standing conjecture, by verifying it for substantial series of finite groups, to give new evidence for the conjecture to hold true, and to improve on the methods to prove the conjecture in general. To achieve this, we will combine theoretical methods with powerful techniques from computational representation theory.
有限群表示论通过研究域上有限维向量空间上有限群的线性作用,为对称现象提供了统一的数学模型。理解域k上的有限群G的表示论等价于理解其块的表示论,即群代数kG的不可分解的直接因子。虽然特征为0的域上的理论已经得到了比较好的理解,但当研究素特征为p的域时,情况发生了巨大的变化。因此,核心问题之一是G的“全局”表示理论在多大程度上已经受到“局部”数据的控制,即G的p-子群及其正规化子的表示。近年来,这一领域一直非常活跃,富有迷人的发展。在他1990年的里程碑式的论文中,M. Broué指出,kG的每一个具有阿贝尔亏群的块,本质上都具有与一个小得多的群代数的块“相同”的表示理论。该项目的目的是进一步推进这一长期存在的猜想,通过验证它的大量系列的有限群,给出新的证据,猜想成立,并改进的方法来证明猜想一般。为了实现这一点,我们将结合联合收割机的理论方法与强大的技术,从计算表示理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Susanne Danz其他文献

Professorin Dr. Susanne Danz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Susanne Danz', 18)}}的其他基金

Darstellungen symmetrischer und alternierender Gruppen
对称和交替群的表示
  • 批准号:
    59287395
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AGEP ACA: An HSI R2 Strategic Collaboration to Improve Advancement of Hispanic Students Into the Professoriate
合作研究:AGEP ACA:HSI R2 战略合作,以提高西班牙裔学生进入教授职位的水平
  • 批准号:
    2343235
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Branched Amphiphilic Peptide Capsules (BAPCs) for the delivery of lethal dsRNA into invasive organisms
事业:分支两亲肽胶囊 (BAPC) 用于将致命的 dsRNA 传递到入侵生物体中
  • 批准号:
    2340070
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Bridging Economic Demands with Social Responsibility: A Deep Dive into SMFDI's Production-Driven CSR Initiatives
连接经济需求与社会责任:深入探讨 SMFDI 的生产驱动型企业社会责任计划
  • 批准号:
    24K20993
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
  • 批准号:
    BB/Y002067/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
  • 批准号:
    EP/Y002482/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了