Towards an Artificial Synapse: Synthesis and Characterization of a Carbon Nanotube-based, Switchable Nanofluidic Transport System for Neurotransmitters

迈向人工突触:基于碳纳米管的可切换纳米流体神经递质传输系统的合成和表征

基本信息

项目摘要

In cell biology many important processes are governed by delivery and release of chemicals on a very small spatial and temporal scale. Information processing and transport in our nervous system is one of the most intriguing examples. Although there are many macroscopic methods to release chemicals at defined positions and time points, they are still lacking a spatial and temporal resolution that matches the biologically relevant scale. Carbon nanotubes are ideal candidates for nanofluidic applications because their dimensions match the dimensions of biologically relevant pores and synapses. In this project, carbon nanotubes will be used to build a membrane system for spatially and temporarily controlled delivery of neurotransmitters.In the first part of this work, transport of small neurotransmitters through different carbon nanotubes will be studied in a microfluidic setup based on coulter counting. In a second step, photoswitchable groups placed at the entrance of the nanotubes will be used to create reversible open/closed states. Thus, complex patterns of open versus closed artificial synapses can be generated by a simple stimulus such as light. Finally, carbon nanotubes will be incorporated into a membrane inside a microfluidic setup, with myoblasts cultivated on top of this membrane, mimicking the neuromuscular junction. The release of neurotransmitters to these cells can then be precisely controlled by light and cell behaviour upon this spatially/temporarily controlled release will be studied. In summary, in this project the transport of molecules in carbon nanotubes will be investigated. Additionally, chemically modified carbon nanotubes will be integrated into a membrane to build a photoswitchable delivery system for neurotransmitters. This setup holds great promises for the study of neuronal cell behaviour on biologically relevant length scales. Therefore, this project represents the first step to pave the way towards an artificial synapse.
在细胞生物学中,许多重要的过程都是由化学物质在非常小的空间和时间尺度上的传递和释放来控制的。我们神经系统中的信息处理和传输是最有趣的例子之一。尽管有许多宏观方法可以在规定的位置和时间点释放化学物质,但它们仍然缺乏与生物学相关尺度相匹配的空间和时间分辨率。碳纳米管是纳米流体应用的理想候选者,因为它们的尺寸与生物相关的孔和突触的尺寸相匹配。在该项目中,碳纳米管将用于构建一个膜系统,用于空间和临时控制神经递质的传递。在这项工作的第一部分中,将在基于库尔特计数的微流体装置中研究小神经递质通过不同碳纳米管的运输。第二步,放置在纳米管入口处的光可切换基团将用于创建可逆的打开/关闭状态。因此,开放与封闭人工突触的复杂模式可以通过简单的刺激(例如光)产生。 最后,碳纳米管将被整合到微流体装置内的膜中,并在该膜的顶部培养成肌细胞,模仿神经肌肉接头。然后,神经递质向这些细胞的释放可以通过光精确控制,并且将研究这种空间/暂时控制释放时的细胞行为。总之,在这个项目中,将研究碳纳米管中分子的传输。此外,化学改性的碳纳米管将被集成到膜中,以构建神经递质的光可切换输送系统。这种设置对于在生物学相关的长度尺度上研究神经元细胞行为具有很大的希望。因此,这个项目代表了为人工突触铺平道路的第一步。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Rapid, Direct, Quantitative, and Label‐Free Detector of Cardiac Biomarker Troponin T Using Near‐Infrared Fluorescent Single‐Walled Carbon Nanotube Sensors
  • DOI:
    10.1002/adhm.201300033
  • 发表时间:
    2014-03
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Jingqing Zhang;S. Kruss;A. Hilmer;S. Shimizu;Zeke Schmois;Flor De La Cruz;P. Barone;N. Reuel;D. Heller;M. Strano
  • 通讯作者:
    Jingqing Zhang;S. Kruss;A. Hilmer;S. Shimizu;Zeke Schmois;Flor De La Cruz;P. Barone;N. Reuel;D. Heller;M. Strano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sebastian Kruss其他文献

Professor Dr. Sebastian Kruss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sebastian Kruss', 18)}}的其他基金

Multispectral near Infrared Imaging of Catecholamine Neurotransmitters with Fluorescent Nanosensors
利用荧光纳米传感器对儿茶酚胺神经递质进行多光谱近红外成像
  • 批准号:
    426834208
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Near infrared fluorescent nanomaterials: From photophysics and functional interfaces to biosensors
近红外荧光纳米材料:从光物理学和功能界面到生物传感器
  • 批准号:
    437021944
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants

相似海外基金

Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Functional recovery of injured CNS by artificial synapse connect
通过人工突触连接恢复受损中枢神经系统的功能
  • 批准号:
    22K07381
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Artificial Optoelectronic Synapse Device Applications of Zinc Oxide Grown by Chemical Bath Deposition
化学浴沉积法生长的氧化锌在人工光电突触器件中的应用
  • 批准号:
    22K04220
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of novel multi-level non-volatile memory devices using ferroelectric hafnium oxide based materials for artificial synapse devises
使用铁电氧化铪基材料研究用于人工突触装置的新型多级非易失性存储器件
  • 批准号:
    21J01667
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrafast Superlattice Phase-change Artificial Synapse
超快超晶格相变人工突触
  • 批准号:
    21H01382
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Frontier development of spintronics-based synapse and neuron for artificial neural networks
基于自旋电子学的人工神经网络突触和神经元的前沿发展
  • 批准号:
    19J12206
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Engineering neuronal circuits by artificial synapse organizers
通过人工突触组织者设计神经元回路
  • 批准号:
    18K19380
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
E2CDA: Type II: A new non-volatile electrochemical transistor as an artificial synapse: device scaling studies
E2CDA:II 型:作为人工突触的新型非易失性电化学晶体管:器件缩放研究
  • 批准号:
    1739795
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Artificial synapse formation by molecular bottom-up technology
分子自下而上技术人工突触形成
  • 批准号:
    15H03541
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of multichannel LSI system for artificial synapse based on whole cell voltage clamp method
基于全细胞电压钳位法的多通道人工突触LSI系统设计
  • 批准号:
    26420318
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了