Frontier development of spintronics-based synapse and neuron for artificial neural networks
基于自旋电子学的人工神经网络突触和神经元的前沿发展
基本信息
- 批准号:19J12206
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2019
- 资助国家:日本
- 起止时间:2019-04-25 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research was to developed spintronics-based devices for artificial neural networks. In the previous year I published experimental results of a probabilistic computing using stochastic magnetic tunnel junctions (MTJ) to solve integer factorization using 8 probabilistic bits (p-bits).In this recent year, I have explored p-computing’s vast application space to determine it’s potential. First, in collaboration with Purdue Univ., we showed experimental results that MTJ-based p-bits can represent a Boltzmann machine and perform machine learning. These results have large implications in the realm of AI machine learning, especially in areas where area-efficient machine learning chips are desired, such as edge computing.Second, in a work with the Univ. of Calif. Santa Barbara (USA), we showed theoretically that the MTJ structure can be changed to produce nanosecond fluctuations and independence. These results are will lead to the foundation of building highly-integrated, large-scale MTJ-based p-bit networks.Finally, faster MTJ fluctuation speed leads to faster solution times. Along with other members in the lab, we experimentally demonstrated an MTJ with an in-plane easy axis with fluctuation speeds as fast as 8 ns, the world’s fastest fluctuating MTJ.
这项研究的目的是为人工神经网络开发基于自旋电子学的设备。在过去的一年里,我发表了使用随机磁隧道结(MTJ)来解决整数因式分解的8个概率位(p位)的概率计算的实验结果。最近一年,我探索了p计算的广阔应用空间,以确定其潜力。首先,我们与普渡大学合作,展示了基于MTJ的p-bit可以表示Boltzmann机器并执行机器学习的实验结果。这些结果对人工智能机器学习领域有很大的影响,特别是在需要区域高效机器学习芯片的领域,如边缘计算。来自加利福尼亚州。圣巴巴拉(美国),我们从理论上证明了MTJ结构可以改变以产生纳秒波动和独立性。这些结果将为构建高集成度、大规模的基于MTJ的p比特网络奠定基础。最后,更快的MTJ波动速度导致更快的求解时间。与实验室中的其他成员一起,我们实验演示了一种具有平面内易轴的MTJ,其波动速度高达8 ns,是世界上波动最快的MTJ。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic Computing Based on Spintronics Technology
基于自旋电子学技术的概率计算
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:S. Fukami;W. A. Borders; A. Z. Pervaiz; K. Y. Camsari; S. Datta;H. Ohno
- 通讯作者:H. Ohno
Solving Integer Factorization with Stochastic Magnetic Tunnel Junctions and a Quantum Adiabatic Algorithm
用随机磁隧道结和量子绝热算法求解整数因式分解
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Borders William A.;Pervaiz Ahmed Z.;Fukami Shunsuke;Camsari Kerem Y.;Ohno Hideo;Datta Supriyo
- 通讯作者:Datta Supriyo
Probabilistic Computing with Stochastic Magnetic Tunnel Junctions
随机磁隧道结的概率计算
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Borders William A.;Pervaiz Ahmed Z.;Fukami Shunsuke;Camsari Kerem Y.;Ohno Hideo;Datta Supriyo
- 通讯作者:Datta Supriyo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BORDERS William其他文献
BORDERS William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
- 批准号:
2322572 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices - A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 - 设备到系统的方法
- 批准号:
2106260 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices – A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 — 设备到系统方法
- 批准号:
2106501 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006753 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Design of Ultra-Low Power IP-Packet-Processing LSI Based on Probabilistic Computing
基于概率计算的超低功耗IP包处理LSI设计
- 批准号:
26700003 - 财政年份:2014
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Probabilistic computing and biological applications
概率计算和生物应用
- 批准号:
0726969 - 财政年份:2007
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
NER: Exploring Nanodevices for Probabilistic Computing Architectures
NER:探索概率计算架构的纳米设备
- 批准号:
0403958 - 财政年份:2004
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant














{{item.name}}会员




