Completeness problems, Carleson measures, and spaces of analytic functions
完备性问题、卡尔森测度和分析函数空间
基本信息
- 批准号:1500675
- 负责人:
- 金额:$ 1.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding to help defray the expenses of U.S. participants in the international conference "Completeness Problems, Carleson Measures, and Spaces of Analytic Functions" that will be held July 6-10, 2015, at the Mittag-Leffler Institute in Djursholm, Sweden. This conference brings together a host of international authorities to explore topics that lie at the interface of harmonic analysis, complex analysis, and operator theory. The topics of the conference are of wide interest in several areas of mathematics and also have impact outside of mathematics. In particular, the completeness problems are related to solution of Sturm-Liouville and Schroedinger differential equations, of importance in mathematical physics, and model spaces have important applications in control theory, of interest in engineering.The conference will focus on recent progress in function theory, model spaces, completeness problems, and Carleson measures; in particular, on two recent stunning developments in the area: Poltoratski's research into the completeness of eigenfunction solutions to certain differential equations and Lacey's work on Carleson measures. Bringing together seasoned researchers and promising young mathematicians to address research challenges in this area is likely to lead to important new questions, inspire further research and new collaborations, and lead to new breakthroughs. The conference program provides ample opportunity for graduate students, postdocs, and other young scientists to present their work. Conference web site: http://www.mittag-leffler.se/?q=150629
该奖项提供资金,以帮助支付国际会议“完备性问题,Carleson措施,和解析函数的空间”,将于2015年7月6日至10日,在米塔格-莱弗勒研究所在朱尔绍尔姆,瑞典的美国参与者的费用。这次会议汇集了一批国际权威人士,探讨调和分析,复分析和算子理论的接口。会议的主题是广泛的兴趣在几个领域的数学,也有影响以外的数学。特别是,完整性问题与Sturm-Liouville和Schroedinger微分方程的解有关,在数学物理中具有重要意义,模型空间在控制理论中具有重要应用,在工程中具有重要意义。会议将集中讨论函数理论,模型空间,完整性问题和Carleson测度的最新进展;特别是,在该领域的两个最新惊人的发展:Poltoratski的研究到完整的本征函数解决某些微分方程和莱西的工作Carleson措施。将经验丰富的研究人员和有前途的年轻数学家聚集在一起,以解决这一领域的研究挑战,可能会导致重要的新问题,激发进一步的研究和新的合作,并导致新的突破。会议计划为研究生,博士后和其他年轻科学家提供了充分的机会来展示他们的工作。会议网址:http://www.mittag-leffler.se/? q=150629
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constanze Liaw其他文献
Constanze Liaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constanze Liaw', 18)}}的其他基金
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2049690 - 财政年份:2020
- 资助金额:
$ 1.61万 - 项目类别:
Intergovernmental Personnel Award
Workshop on Emergent Trends in Complex Function Theory
复变函数理论新兴趋势研讨会
- 批准号:
1936702 - 财政年份:2019
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
Finite Rank Perturbations and Model Theory
有限阶扰动和模型理论
- 批准号:
1802682 - 财政年份:2017
- 资助金额:
$ 1.61万 - 项目类别:
Continuing Grant
Finite Rank Perturbations and Model Theory
有限阶扰动和模型理论
- 批准号:
1700204 - 财政年份:2017
- 资助金额:
$ 1.61万 - 项目类别:
Continuing Grant
Complex and Harmonic Analysis in Spectral Theory; Cyclic and Subcyclic vectors of Rank One Perturbations and Anderson-type Hamiltonians
谱理论中的复数和调和分析;
- 批准号:
1261687 - 财政年份:2012
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
Complex and Harmonic Analysis in Spectral Theory; Cyclic and Subcyclic vectors of Rank One Perturbations and Anderson-type Hamiltonians
谱理论中的复数和调和分析;
- 批准号:
1101477 - 财政年份:2011
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Continuing Grant