Applications of Model Theory to Extremal Combinatorics and Compactifications of G-spaces

模型理论在极值组合学和G空间紧化中的应用

基本信息

  • 批准号:
    1500671
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Model theory, a branch of mathematical logic, studies general properties of mathematical structures. Work in model theory often answers questions in other areas of mathematics. In the recent years there have been exciting new developments in applications of model theory to combinatorics and analysis. This project advances research on definable topological groups and their actions, and also on combinatorial questions in the context of distal theories. This research project builds upon the investigator's previous work on definable group actions and combinatorial properties of theories without independence properties. This project undertakes a systematic study of definable compactifications of group actions, and extremal combinatorics in the not-independence-property (NIP) setting. More specifically, the project studies extremal combinatorics in distal theories and the Erdos-Hajnal conjecture for graphs definable in NIP theories. The project will also investigate growth rates of Ramsey functions in o-minimal and other tame theories, and will develop a model theoretic framework for compactifications of continuous group actions, in particular Riemannian symmetric spaces.
模型论是数理逻辑的一个分支,研究数学结构的一般性质。模型论的工作经常回答其他数学领域的问题。近年来,模型论在组合数学和分析中的应用取得了令人兴奋的新发展。 该项目推进了可定义拓扑群及其作用的研究,以及在远端理论背景下的组合问题。这个研究项目建立在研究者以前关于可定义的群作用和没有独立性质的理论的组合性质的工作之上。本计画系系统研究群作用之可定义紧化,以及非独立性设定下之极值组合学。 更具体地说,该项目研究远端理论中的极值组合学和NIP理论中可定义的图的Erdos-Hajnal猜想。该项目还将研究o-极小和其他驯服理论中Ramsey函数的增长率,并将为连续群作用的紧化,特别是黎曼对称空间,开发一个模型理论框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Starchenko其他文献

Uniform definability of the Weierstrass $\wp$ functions and generalized tori of dimension one
  • DOI:
    10.1007/s00029-005-0393-y
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Ya’acov Peterzil;Sergei Starchenko
  • 通讯作者:
    Sergei Starchenko

Sergei Starchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Starchenko', 18)}}的其他基金

Model Theory and Applications 2022, Cetraro, Italy
模型理论与应用 2022,切特拉罗,意大利
  • 批准号:
    2219520
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference on Model Theory and Applications 2020
2020年模型理论与应用会议
  • 批准号:
    2012004
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Model Theory and Combinatorial Geometry, Algebraic and O-Minimal Flows.
模型理论和组合几何、代数和 O 最小流。
  • 批准号:
    1800806
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Travel Awards for US based participants to attend the workshop "Model Theory 2013", June 10-15, 2013, Ravello, Italy
为美国参与者参加 2013 年 6 月 10 日至 15 日在意大利拉维罗举办的“模型理论 2013”​​研讨会提供旅行奖励
  • 批准号:
    1320070
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Travel Awards for US based participants to attend the workshop "Recent Developments in Model Theory", Summer 2011, Ol'eron, France
为美国参加者颁发旅行奖,参加“模型理论的最新发展”研讨会,2011 年夏季,法国 Oleron
  • 批准号:
    1103239
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
O-minimality and its applications
O-极小性及其应用
  • 批准号:
    1101607
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Topics in o-minimal structures
o-最小结构中的主题
  • 批准号:
    0701364
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Model theory and o-minimal structures
模型理论和最小结构
  • 批准号:
    0400163
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Structures Definable in O-Minimal Models
可在 O 最小模型中定义的结构
  • 批准号:
    9970551
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Definable in o-minimal Structures
数学科学:o-最小结构中可定义的群
  • 批准号:
    9896108
  • 财政年份:
    1997
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Higher classification theory in model theory and applications
模型理论与应用中的高级分类理论
  • 批准号:
    2246598
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
  • 批准号:
    RGPIN-2021-02474
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
  • 批准号:
    RGPIN-2019-04204
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Minimal model theory and its applications
最小模型理论及其应用
  • 批准号:
    22K13887
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Model Theory and Applications 2022, Cetraro, Italy
模型理论与应用 2022,切特拉罗,意大利
  • 批准号:
    2219520
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Connecting Model Theory and Function Spaces: New Applications in Analysis and Machine Learning
连接模型理论和函数空间:分析和机器学习的新应用
  • 批准号:
    555749-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
  • 批准号:
    RGPIN-2019-04204
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Reconciling Model-Based and Learning-Based Imaging: Theory, Algorithms, and Applications
职业:协调基于模型和基于学习的成像:理论、算法和应用
  • 批准号:
    2043134
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
  • 批准号:
    RGPIN-2021-02474
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了