Free boundaries and extremal inequalities
自由边界和极端不平等
基本信息
- 批准号:1500771
- 负责人:
- 金额:$ 38.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A free boundary is an interface between two materials like oil and water. Another example is the curve outlining the wake of a boat. Yet another is the interface between plasma and ordinary matter in a fusion reactor. Remarkably, the same mathematics of free boundaries that describes these physical phenomena can be used to design optimal shapes. For example, when one wants to enclose an oven or pipe with insulating material, there is a shape that is optimal in the sense that the sum of the cost of insulation and the cost due to heat loss is minimized. Moreover, even farther from physics, one can seek optimal ways to divide data sets into yes/no regions according to rules that minimize the errors, that is, false positive or false negative identifications or diagnoses. The overarching goal of this project is to reduce the complexity of the problem of searching for these optimal shapes. The expectation is that there are broad classes of situations in which the optimal divider (free boundary) resembles a straight line or plane at an appropriate scale. In those cases, one can be confident of finding a near optimal shape quickly. In addition to conducting his own research, the PI has served and will serve as faculty advisor for research projects by dozens of undergraduates and high school students in programs at MIT. Moreover, he has posted videos and lecture notes of a widely viewed single variable calculus course on MIT's Open Courseware site. He is currently working on an on-line course to be disseminated by MITx.Free boundaries arise as the interface between materials in which the materials retain some energy. Typically, space is divided into level sets of some quantity like temperature or pressure. In contrast, the interface represented by a minimal surface lives in an ambient space that is empty. Despite this difference between these two types of interfaces, there are profound connections between them. The main goal of this project is to show that interfaces and level sets of least energy for a wide variety of problems are as simple as possible. The PI proposes that the level sets of optimizers resemble parallel planes in that these surfaces are connected and cleanly separated. Usually, methods from the more developed theory of minimal surfaces have guided the study of free boundaries, but here ideas from the theory of free boundaries will guide the study of minimal surfaces. The proposal also gives a pathway to proving analogous simple behavior of level sets of the least energy Neumann eigenfunction for a convex symmetric domain. This would yield an important case of the longstanding ``hot spots'' conjecture of J. Rauch. A second project is to identify the cases of equality in the celebrated Alexandrov-Fenchel inequalities in convex geometry. The PI will use a geometric approach based on establishing new properties, of independent interest, of the Brenier (optimal transportation) mapping. A third project is aimed at developing a highly accurate description of localization of eigenfunctions and quantum tunneling, relevant to the design of LEDs.
自由边界是两种物质(如油和水)之间的界面。 另一个例子是描绘船尾流的曲线。另一个是聚变反应堆中等离子体和普通物质之间的界面。 值得注意的是,描述这些物理现象的自由边界数学可以用来设计最佳形状。 例如,当人们想要用隔热材料封闭烤箱或管道时,在隔热成本和由于热损失引起的成本的总和最小化的意义上,存在最佳的形状。此外,即使远离物理学,人们也可以根据最小化错误(即假阳性或假阴性识别或诊断)的规则,寻求将数据集划分为是/否区域的最佳方法。 该项目的首要目标是降低搜索这些最佳形状的问题的复杂性。 期望的是,有广泛的情况下,最佳分割线(自由边界)类似于一条直线或平面在适当的比例。 在这些情况下,可以有信心快速找到接近最佳的形状。 除了进行自己的研究外,PI还担任并将担任麻省理工学院数十名本科生和高中生的研究项目的教师顾问。 此外,他还在麻省理工学院的开放式课程网站上发布了一门被广泛观看的单变量微积分课程的视频和讲义。他目前正在研究一个由MITx传播的在线课程。自由边界出现在材料之间的界面上,其中材料保留了一些能量。 通常,空间被划分为温度或压力等某个量的水平集。 相反,由最小表面表示的界面生活在空的环境空间中。 尽管这两种类型的接口之间存在差异,但它们之间存在深刻的联系。 这个项目的主要目标是表明,接口和水平集的最低能源的各种各样的问题是尽可能简单。PI提出优化器的水平集类似于平行平面,因为这些表面是连接的并且干净地分离。通常,从更发达的极小曲面理论的方法指导了自由边界的研究,但在这里,从自由边界理论的想法将指导极小曲面的研究。该方法也为证明凸对称区域上最小能量Neumann本征函数水平集的类似简单行为提供了一条途径。 这将产生一个重要的情况下,长期的“热点”猜想的J。 第二个项目是确定平等的情况下,著名的亚历山德罗夫-Fenchel不等式凸几何。 PI将使用基于建立新属性的几何方法,独立的兴趣,Brenier(最佳运输)映射。第三个项目的目的是开发一个高度准确的描述本地化的本征函数和量子隧穿,相关的LED的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jerison其他文献
Internal DLA in Higher Dimensions
更高维度的内部 DLA
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
David Jerison;Lionel Levine;S. Sheffield - 通讯作者:
S. Sheffield
Approximately rational consumer demand
- DOI:
10.1007/bf01212915 - 发表时间:
1993-06-01 - 期刊:
- 影响因子:1.100
- 作者:
David Jerison;Michael Jerison - 通讯作者:
Michael Jerison
Internal DLA and the Gaussian free field
内部 DLA 和高斯自由场
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David Jerison;Lionel Levine;S. Sheffield - 通讯作者:
S. Sheffield
Logarithmic fluctuations for internal DLA
内部 DLA 的对数波动
- DOI:
10.1090/s0894-0347-2011-00716-9 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
David Jerison;Lionel Levine;S. Sheffield - 通讯作者:
S. Sheffield
H?rmander?s condition
- DOI:
10.1215/s0012-7094-86-05329-9 - 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
David Jerison - 通讯作者:
David Jerison
David Jerison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jerison', 18)}}的其他基金
Free Boundaries, Level Surfaces, and Stochastic Growth
自由边界、水平面和随机增长
- 批准号:
1069225 - 财政年份:2011
- 资助金额:
$ 38.51万 - 项目类别:
Continuing Grant
Partial Differential Equations and Fourier Analysis
偏微分方程和傅里叶分析
- 批准号:
0244991 - 财政年份:2003
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Estimates of Fourier Transforms and Applications
傅里叶变换的估计和应用
- 批准号:
0201099 - 财政年份:2002
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Radon-like Transforms: Possible Applications to Partial Differential Equations and Inverse Problems
类 Radon 变换:在偏微分方程和反问题中的可能应用
- 批准号:
9988798 - 财政年份:2000
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Partial Differential Equations and Fourier Analysis
偏微分方程和傅里叶分析
- 批准号:
0070412 - 财政年份:2000
- 资助金额:
$ 38.51万 - 项目类别:
Continuing grant
Partial Differential Equations and Harmonic Analysis
偏微分方程和调和分析
- 批准号:
9705825 - 财政年份:1997
- 资助金额:
$ 38.51万 - 项目类别:
Continuing grant
Mathematical Sciences: Partial Differential Equations and Harmonic Analysis
数学科学:偏微分方程和调和分析
- 批准号:
9401355 - 财政年份:1994
- 资助金额:
$ 38.51万 - 项目类别:
Continuing grant
Mathematical Sciences: The Geometry of Harmonic Measure
数学科学:调和测度的几何
- 批准号:
9106507 - 财政年份:1991
- 资助金额:
$ 38.51万 - 项目类别:
Continuing grant
Mathematical Sciences: Fourier Analysis and Partial Differential Equations
数学科学:傅里叶分析和偏微分方程
- 批准号:
8804582 - 财政年份:1988
- 资助金额:
$ 38.51万 - 项目类别:
Continuing grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8451770 - 财政年份:1985
- 资助金额:
$ 38.51万 - 项目类别:
Continuing Grant
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 38.51万 - 项目类别:
Discovery Projects
DISTOPIA - Distorting the Aerospace Manufacturing Boundaries: Operational Integration of Autonomy on Titanium
DISTOPIA - 扭曲航空航天制造边界:钛合金上的自主运营集成
- 批准号:
10086469 - 财政年份:2024
- 资助金额:
$ 38.51万 - 项目类别:
Collaborative R&D
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Advancing the boundaries of grain sampling: A robot for the autonomous, safe and representative sampling of grain bulks
突破谷物采样的界限:用于对散装谷物进行自主、安全和代表性采样的机器人
- 批准号:
10089327 - 财政年份:2024
- 资助金额:
$ 38.51万 - 项目类别:
Collaborative R&D
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
- 批准号:
2312994 - 财政年份:2023
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Collaborative Research: Implicit bivalence: Testing boundaries, causes, and consequences of coactivating positive and negative implicit evaluations
合作研究:内隐二价:测试共同激活积极和消极内隐评价的边界、原因和后果
- 批准号:
2234933 - 财政年份:2023
- 资助金额:
$ 38.51万 - 项目类别:
Standard Grant
Linking data about media contents across platforms and national boundaries in Japan and France i
在日本和法国跨平台和国界链接有关媒体内容的数据
- 批准号:
23KF0070 - 财政年份:2023
- 资助金额:
$ 38.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the role of grain boundaries in local deformation using the polycrystalline with columnar grains
使用柱状晶多晶研究晶界在局部变形中的作用
- 批准号:
23K19178 - 财政年份:2023
- 资助金额:
$ 38.51万 - 项目类别:
Grant-in-Aid for Research Activity Start-up