Moduli Spaces of Holomorphic Curves: Properties and Applications
全纯曲线的模空间:性质和应用
基本信息
- 批准号:1500875
- 负责人:
- 金额:$ 32.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
String theory is a model that represents elementary particles by vibrating strings with the aim of unifying the four fundamental forces of nature. While string theory is one of the main paradigms in physics today, it has yet to make experimentally testable predictions. However, it has generated many mathematical predictions that have led to fundamental developments in algebraic geometry and symplectic topology, especially in relation to (pseudo-) holomorphic curves. This project aims to further test string theory mathematically, while deepening the mathematical understanding of such curves with an eye toward applications to more classical problems in geometry. Some of the projects in this work will be pursued by graduate students and other junior researchers in collaboration with the investigator.This project has four distinct directions at the juncture of algebraic geometry, symplectic topology, and string theory. It will explore connections between the rigidity of pseudo-holomorphic curves in symplectic topology and birational algebraic geometry. It will study the local structure of moduli spaces of stable morphisms of genus 2 and higher, with the aim of later applications in mirror symmetry and enumerative geometry. The PI will also apply his method for computing genus 1 Gromov-Witten invariants to more targets, with the aims of verifying predictions of string theory predictions in additional cases. The fourth direction aims to develop positive-genus real Gromov-Witten theory and its relations with open string theory and real enumerative geometry.This award is jointly funded by the Algebra and Number Theory and Geometric Analysis programs.
弦理论是一种通过振动弦来表示基本粒子的模型,其目的是统一自然界的四种基本力。虽然弦理论是当今物理学的主要范式之一,但它还没有做出实验上可检验的预测。然而,它产生了许多数学预测,导致了代数几何和辛拓扑的基本发展,特别是在(伪)全纯曲线方面。该项目旨在进一步测试弦理论的数学,同时加深对这些曲线的数学理解,并着眼于应用于更经典的几何问题。研究生和其他初级研究人员将与研究者合作开展本研究中的一些项目。该项目在代数几何、辛拓扑和弦理论的结合点上有四个不同的方向。它将探讨辛拓扑和双有理代数几何中伪全纯曲线的刚性之间的联系。它将研究亏格2和更高的稳定态射的模空间的局部结构,目的是以后在镜像对称和计数几何中的应用。PI还将把他计算亏格1 Gromov-Witten不变量的方法应用于更多目标,目的是在其他情况下验证弦理论预测的预测。第四个方向旨在发展正亏格的真实的Gromov-Witten理论及其与开弦理论和真实的枚举几何的关系。该奖项由代数和数论以及几何分析项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksey Zinger其他文献
Energy bounds and vanishing results for the Gromov–Witten invariants of the projective space
- DOI:
10.1016/j.geomphys.2019.103479 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:
- 作者:
Aleksey Zinger - 通讯作者:
Aleksey Zinger
MAT 645: Symplectic Topology Spring 2014 Supplementary Notes
MAT 645:辛拓扑 2014 年春季补充笔记
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aleksey Zinger - 通讯作者:
Aleksey Zinger
Aleksey Zinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksey Zinger', 18)}}的其他基金
Real Gromov-Witten Theory and its Applications
真正的格罗莫夫-维滕理论及其应用
- 批准号:
2301493 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
The Mathematics of Real and Open Topological Strings
实数和开拓扑弦的数学
- 批准号:
1901979 - 财政年份:2019
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
CAREER: Holomorphic Curves in Algebraic Geometry and Symplectic Topology
职业:代数几何和辛拓扑中的全纯曲线
- 批准号:
0846978 - 财政年份:2009
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
Geometry of Pseudoholomorphic Curves and Gromov-Witten Invariants
伪全纯曲线的几何和 Gromov-Witten 不变量
- 批准号:
0604874 - 财政年份:2006
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
相似海外基金
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 32.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
- 批准号:
20K03640 - 财政年份:2020
- 资助金额:
$ 32.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2018
- 资助金额:
$ 32.1万 - 项目类别:
Postdoctoral Fellowships
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Postdoctoral Fellowships
Geometry and Analysis of Moduli Spaces of Holomorphic Bundles
全纯丛模空间的几何与分析
- 批准号:
1406513 - 财政年份:2014
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
Investigation of special Banach spaces of holomorphic, harmonic and real analytic functions
全纯、调和和实解析函数的特殊 Banach 空间的研究
- 批准号:
256279602 - 财政年份:2014
- 资助金额:
$ 32.1万 - 项目类别:
Research Grants
Classes of operators on holomorphic function spaces with ties to geometry, measure theory and mathematical physics
与几何、测度论和数学物理相关的全纯函数空间上的算子类
- 批准号:
105467-2011 - 财政年份:2014
- 资助金额:
$ 32.1万 - 项目类别:
Discovery Grants Program - Individual
Applications of real singularity theory and the homotopy types of spaces of holomorphic maps
实奇点理论与全纯映射空间同伦型的应用
- 批准号:
26400083 - 财政年份:2014
- 资助金额:
$ 32.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation in parameter spaces of holomorphic and anti-holomorphic dynamics and its visualization
全纯和反全纯动力学参数空间的分岔及其可视化
- 批准号:
26400115 - 财政年份:2014
- 资助金额:
$ 32.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holomorphic function spaces and quantization
全纯函数空间和量化
- 批准号:
1301534 - 财政年份:2013
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant