The Mathematics of Real and Open Topological Strings
实数和开拓扑弦的数学
基本信息
- 批准号:1901979
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
String theory is a model that represents elementary particles by vibrating strings with the aim of unifying the four fundamental forces of nature. While string theory is one of the main paradigms in physics today, it has yet to make experimentally testable predictions. However, it has generated many mathematical predictions that have led to fundamental developments in algebraic geometry and symplectic topology, especially in relation to holomorphic curves. This project's two directions will further test string theory mathematically in the so-called real and open sectors, which have long lagged behind the standard closed sector, and develop the associated mathematical framework and connections between different fields of mathematics, including enumerative algebraic geometry, knot theory, and representation theory.This project will build on work that established the mathematical foundations behind the real sector of string theory, to advance the mathematical understanding of the predictions arising from this sector and to establish the mathematical foundations of the closely related open sector of string theory. The project will also utilize older work that established the BCOV mirror symmetry prediction for counts of genus one curves in a quintic threefold and it will continue the recent work of a current doctoral student that introduced a powerful topological technique for lifting homology relations from Deligne-Mumford moduli spaces of stable curves to moduli spaces of stable (pseudo-) holomorphic maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弦理论是一种通过振动弦来表示基本粒子的模型,其目的是统一自然界的四种基本力。虽然弦理论是当今物理学的主要范式之一,但它还没有做出实验上可检验的预测。然而,它产生了许多数学预测,导致了代数几何和辛拓扑的基本发展,特别是在全纯曲线方面。该项目的两个方向将进一步在所谓的真实的和开放的扇区中对弦理论进行数学测试,这些扇区长期以来落后于标准的封闭扇区,并发展相关的数学框架和不同数学领域之间的联系,包括枚举代数几何,纽结理论,这个项目将建立在建立弦理论真实的部分背后的数学基础的工作上,推进数学理解的预测所产生的这一部门,并建立数学基础的密切相关的开放部门弦理论。该项目还将利用较早的工作,建立了BCOV镜像对称预测,用于五次三倍中的亏格曲线的计数,并将继续当前博士生的最近工作,该工作引入了一种强大的拓扑技术,用于将稳定曲线的Deligne-Mumford模空间的同调关系提升到稳定(伪)该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WDVV-type relations for disk Gromov–Witten invariants in dimension 6
维度 6 中盘 Gromov-Witten 不变量的 WDVV 型关系
- DOI:10.1007/s00208-020-02130-1
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Chen, Xujia;Zinger, Aleksey
- 通讯作者:Zinger, Aleksey
A Geometric Depiction of Solomon–Tukachinsky’s Construction of Open Gromov–Witten Invariants
所罗门·图卡钦斯基构造开格罗莫夫·维滕不变量的几何描述
- DOI:10.1007/s42543-021-00044-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Xujia
- 通讯作者:Chen, Xujia
Solomon-Tukachinsky’s Versus Welschinger’s Open Gromov-Witten Invariants of Symplectic Six-Folds
所罗门-图卡钦斯基 (Solomon-Tukachinsky) 与韦尔辛格 (Welschinger) 的辛六重开格罗莫夫-维滕不变量
- DOI:10.1093/imrn/rnaa318
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Chen, Xujia
- 通讯作者:Chen, Xujia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksey Zinger其他文献
Energy bounds and vanishing results for the Gromov–Witten invariants of the projective space
- DOI:
10.1016/j.geomphys.2019.103479 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:
- 作者:
Aleksey Zinger - 通讯作者:
Aleksey Zinger
MAT 645: Symplectic Topology Spring 2014 Supplementary Notes
MAT 645:辛拓扑 2014 年春季补充笔记
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aleksey Zinger - 通讯作者:
Aleksey Zinger
Aleksey Zinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksey Zinger', 18)}}的其他基金
Real Gromov-Witten Theory and its Applications
真正的格罗莫夫-维滕理论及其应用
- 批准号:
2301493 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Moduli Spaces of Holomorphic Curves: Properties and Applications
全纯曲线的模空间:性质和应用
- 批准号:
1500875 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Holomorphic Curves in Algebraic Geometry and Symplectic Topology
职业:代数几何和辛拓扑中的全纯曲线
- 批准号:
0846978 - 财政年份:2009
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Geometry of Pseudoholomorphic Curves and Gromov-Witten Invariants
伪全纯曲线的几何和 Gromov-Witten 不变量
- 批准号:
0604874 - 财政年份:2006
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
- 批准号:
2327030 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
- 批准号:
2339509 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Open-Access, Real-Time High-Throughput Metabolomics for High-Field and Benchtop NMR for Biological Inquiry
职业:用于生物研究的高场和台式 NMR 的开放获取、实时高通量代谢组学
- 批准号:
2237314 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
State of the Railway Compiler Data Solution (SORC-lite): open access real-time signalling data.
铁路状况编译器数据解决方案 (SORC-lite):开放访问实时信令数据。
- 批准号:
10038973 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Collaborative R&D
OAC Core: Small: Open-Source Robust 4D Reconstruction Framework for Real-Time Dynamic Human Capture
OAC Core:小型:用于实时动态人体捕捉的开源稳健 4D 重建框架
- 批准号:
2007661 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Extracting Analytics from NLP of English language learner to to display real-time Open Learner Model
从英语学习者的 NLP 中提取分析以显示实时开放学习者模型
- 批准号:
536649-2018 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Open KE Fellowship: Translation of a Miniature CT-DO Sensor from the Laboratory to Real World Applications
开放 KE 奖学金:微型 CT-DO 传感器从实验室到现实世界应用的转化
- 批准号:
NE/S006451/2 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
Improving malaria risk assessment in Blantyre district, Malawi by optimizing Anopheles surveillance using open-source and real-time data
使用开源和实时数据优化按蚊监测,改善马拉维布兰太尔地区的疟疾风险评估
- 批准号:
MR/T031743/1 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Fellowship
Developing of simulation for analyzing fuel consumption on the propulsion system for vessels, making source codes open, and evaluating with real ship data
开发船舶推进系统燃油消耗分析仿真,开放源代码,并用实船数据进行评估
- 批准号:
18K04579 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open KE Fellowship: Translation of a Miniature CT-DO Sensor from the Laboratory to Real World Applications
开放 KE 奖学金:微型 CT-DO 传感器从实验室到现实世界应用的转化
- 批准号:
NE/S006451/1 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant