CAREER: Holomorphic Curves in Algebraic Geometry and Symplectic Topology

职业:代数几何和辛拓扑中的全纯曲线

基本信息

  • 批准号:
    0846978
  • 负责人:
  • 金额:
    $ 44.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0846978Principal Investigator: Aleksey ZingerThe invention of pseudo-holomorphic curves techniques in the1980s revolutionized symplectic topology, profoundly impactedalgebraic geometry, and led to astounding connections with stringtheory. This project has three distinct directions, motivated bythis interplay between different fields. The primary one is adetailed study of deformations of such curves, for arbitrary aswell as generic complex structures. It aims at the fundamentalunderstanding of properties of pseudo-holomorphic curves,including Gromov-Witten invariants (counts of such curves) andmore qualititative aspects of their behavior (e.g. existence,uniruledness, etc.). The aim of another direction is to applytechniques employed in the PI's proof of the string theoryprediction for the genus 1 GW-invariants of a quintic threefoldin many other setting, testing additional mirror predictions andgoing beyond them. The third direction would further develop thePI's local excess intersection approach and its applications toclassical enumerative geometry.String theory is a physical model that represents elementaryparticles by vibrating strings with the aim of unifying the fourfundamental forces of nature. As such srings move in space, theysweep out Riemann surfaces, also called holomorphic curves. Whilestring theory is one of the main paradigms in physics today, ithas yet to make any experimentally testable predictions. However,it has generated plenty of mathematical predictions and led tofundamental developments in symplectic topology and algebraicgeometry, especially in relation to (pseudo-) holomorphiccurves. This proposal aims to further test string theorymathematically, while deepening the mathematical understanding ofsuch curves with an eye toward applications to more classicalproblems in geometry. Some of the projects in this proposal willpursued by graduate students under the PI's supervision.This award is jointly supported by the programs in Geometric Analysis and in Algebra, Number Theory, and Combinatorics.
AbstractAward:DMS-0846978首席研究员:Aleksey Zinger 20世纪80年代伪全纯曲线技术的发明彻底改变了辛拓扑,深刻影响了代数几何,并导致了与弦理论的惊人联系。 该项目有三个不同的方向,其动机是不同领域之间的相互作用。第一部分详细研究了任意复杂结构和一般复杂结构的曲线变形。它旨在对伪全纯曲线性质的基本理解,包括Gromov-Witten不变量(此类曲线的计数)和它们行为的更多定性方面(例如,存在性,单向性等)。 另一个方向的目的是applytechniques采用在PI的证明弦理论预测的亏格1 GW-不变量的五次threefolds在许多其他设置,测试额外的镜像预测和超越他们。第三个方向将进一步发展PI的局部过剩相交方法及其在经典枚举几何中的应用。弦理论是一种通过振动弦来表示基本粒子的物理模型,其目的是统一自然界的四种基本力。当这样的曲线在空间中运动时,它们会产生黎曼曲面,也称为全纯曲线。虽然弦理论是当今物理学的主要范式之一,但它还没有做出任何实验上可检验的预言。然而,它产生了大量的数学预言,并导致辛拓扑和代数几何的基本发展,特别是在(伪)全纯曲线。这个建议旨在进一步测试弦理论的数学,同时加深对这些曲线的数学理解,着眼于应用于更经典的几何问题。该项目中的一些项目将由PI监督下的研究生进行。该奖项由几何分析和代数,数论和组合学项目共同支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksey Zinger其他文献

Energy bounds and vanishing results for the Gromov–Witten invariants of the projective space
  • DOI:
    10.1016/j.geomphys.2019.103479
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aleksey Zinger
  • 通讯作者:
    Aleksey Zinger
MAT 645: Symplectic Topology Spring 2014 Supplementary Notes
MAT 645:辛拓扑 2014 年春季补充笔记
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aleksey Zinger
  • 通讯作者:
    Aleksey Zinger

Aleksey Zinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksey Zinger', 18)}}的其他基金

Real Gromov-Witten Theory and its Applications
真正的格罗莫夫-维滕理论及其应用
  • 批准号:
    2301493
  • 财政年份:
    2023
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
The Mathematics of Real and Open Topological Strings
实数和开拓扑弦的数学
  • 批准号:
    1901979
  • 财政年份:
    2019
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
Moduli Spaces of Holomorphic Curves: Properties and Applications
全纯曲线的模空间:性质和应用
  • 批准号:
    1500875
  • 财政年份:
    2015
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
Geometry of Pseudoholomorphic Curves and Gromov-Witten Invariants
伪全纯曲线的几何和 Gromov-Witten 不变量
  • 批准号:
    0604874
  • 财政年份:
    2006
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202524
  • 财政年份:
    2002
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Fellowship Award

相似国自然基金

Skew-holomorphic Jacobi形式的算术
  • 批准号:
    10726030
  • 批准年份:
    2007
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Applications of holomorphic curves in symplectic topology
全纯曲线在辛拓扑中的应用
  • 批准号:
    2261120
  • 财政年份:
    2019
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Studentship
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
  • 批准号:
    488168-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Postdoctoral Fellowships
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
  • 批准号:
    488168-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Postdoctoral Fellowships
Holomorphic Curves in Embeddings and Dynamics
嵌入和动力学中的全纯曲线
  • 批准号:
    1711976
  • 财政年份:
    2017
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
Holomorphic curves and complex Monge-Ampere equation
全纯曲线和复杂的 Monge-Ampere 方程
  • 批准号:
    15H06129
  • 财政年份:
    2015
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Moduli Spaces of Holomorphic Curves: Properties and Applications
全纯曲线的模空间:性质和应用
  • 批准号:
    1500875
  • 财政年份:
    2015
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
Knots and contact topology through holomorphic curves
通过全纯曲线的结和接触拓扑
  • 批准号:
    1406371
  • 财政年份:
    2014
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
Holomorphic vector bundles on formal neighbourhoods of elliptic curves
椭圆曲线形式邻域上的全纯向量丛
  • 批准号:
    465143-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 44.31万
  • 项目类别:
    University Undergraduate Student Research Awards
Holomorphic vector bundles on formal neighbourhoods of elliptic curves
椭圆曲线形式邻域上的全纯向量丛
  • 批准号:
    465160-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 44.31万
  • 项目类别:
    University Undergraduate Student Research Awards
Pseudo-holomorphic curves and periodic orbits in Hamiltonian dynamics
哈密​​顿动力学中的伪全纯曲线和周期轨道
  • 批准号:
    25800041
  • 财政年份:
    2013
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了