Harmonic Maps between Hyperbolic Spaces, Realizing Number Fields as Invariant Trace Fields, and Constructing Surface Subgroups in Hyperbolic Groups
双曲空间之间的调和映射、将数域实现为不变迹域以及在双曲群中构造曲面子群
基本信息
- 批准号:1500951
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pure mathematics fosters the development of ideas that are later utilized in natural sciences such as physics and biology. In physics, the universe is described as a 3-dimensional space; studying the geometry and topology of 3-manifolds may prove important in answering fundamental physical questions. This project investigates and develops techniques that involve an interplay between coarse hyperbolic geometry and statistical properties of various geometric flows, which are becoming indispensable tools in proving results from a range of fields. Although geometry and dynamics of such flows are not always necessary to state or prove these breakthroughs, they give the 'right' way of thinking about them and are likely to catalyze further progress. Through participation in this research project, the next generation of graduate students will be introduced to these concepts.The PI will study questions about geometry of hyperbolic groups and negatively curved manifolds. In connection with the Cannon Conjecture, the question of whether a hyperbolic group whose boundary is the 2-sphere contains an abundance of quasi-convex surface subgroups will be addressed. In a different direction, a Dirichlet type problem of finding harmonic mappings with prescribed quasi-symmetric boundary values will be studied, with particular emphasis on the Schoen Conjecture.
纯数学促进了思想的发展,这些思想后来被用于自然科学,如物理和生物学。在物理学中,宇宙被描述为一个三维空间;研究三维流形的几何和拓扑可能被证明对回答基本的物理问题很重要。该项目研究和开发了涉及粗双曲几何和各种几何流动的统计特性之间的相互作用的技术,这些技术正在成为证明来自一系列领域的结果的不可或缺的工具。尽管这种流动的几何学和动力学并不总是必要来陈述或证明这些突破,但它们给出了思考这些突破的“正确”方式,并可能催化进一步的进展。通过参与这个研究项目,下一代研究生将被介绍给这些概念。PI将学习关于双曲群和负曲线流形的几何问题。结合Cannon猜想,讨论了边界为2-球面的双曲群是否含有丰富的拟凸曲面子群的问题。在不同的方向上,我们将研究寻找具有给定拟对称边值的调和映象的Dirichlet型问题,特别是对Schoen猜想的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Markovic其他文献
Association between per- and polyfluoroalkyl substances (PFAS) and depression in U.S. adults: A cross-sectional study of NHANES from 2005 to 2018.
全氟烷基物质和多氟烷基物质 (PFAS) 与美国成年人抑郁症之间的关联:2005 年至 2018 年 NHANES 的横断面研究。
- DOI:
10.1016/j.envres.2023.117188 - 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Wensen Yi;Lihui Xuan;Hesham MH Zakaly;Vladimir Markovic;Justyna Miszczyk;Hua Guan;Ping;Ruixue Huang - 通讯作者:
Ruixue Huang
Harmonic maps between 3-dimensional hyperbolic spaces
- DOI:
10.1007/s00222-014-0536-x - 发表时间:
2014-07-15 - 期刊:
- 影响因子:3.600
- 作者:
Vladimir Markovic - 通讯作者:
Vladimir Markovic
The Teichmüller distance between finite index subgroups of $${PSL_2(\mathbb{Z})}$$
- DOI:
10.1007/s10711-008-9281-x - 发表时间:
2008-08-01 - 期刊:
- 影响因子:0.500
- 作者:
Vladimir Markovic;Dragomir Šarić - 通讯作者:
Dragomir Šarić
Geometrically and topologically random surfaces in a closed hyperbolic three manifold
闭双曲三流形中的几何和拓扑随机表面
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jeremy A. Kahn;Vladimir Markovic;I. Smilga - 通讯作者:
I. Smilga
Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces
- DOI:
10.1007/s11854-020-0102-y - 发表时间:
2020-04-20 - 期刊:
- 影响因子:0.900
- 作者:
Dmitri Gekhtman;Vladimir Markovic - 通讯作者:
Vladimir Markovic
Vladimir Markovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Markovic', 18)}}的其他基金
Topics in Low Dimensional Geometric Analysis
低维几何分析主题
- 批准号:
1800742 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
基于MAPS单粒子瞬态响应的核应急强场辐射探测与噪声抑制并行处理方法研究
- 批准号:11905102
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于MAPS的星载硅径迹探测器及读出电子学原理研究
- 批准号:11773027
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
大阵列高速MAPS的压缩采样读出策略及电路架构研究
- 批准号:11705148
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
北京谱仪Ⅲ主漂移室内室改进的MAPS探测技术研究
- 批准号:U1232202
- 批准年份:2012
- 资助金额:280.0 万元
- 项目类别:联合基金项目
两栖类皮肤膜活性肽α-MAPs选择性阻抑乳腺癌MCF-7细胞生长的分子机制研究
- 批准号:30970352
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Variational problems for maps between manifolds
流形之间映射的变分问题
- 批准号:
2748267 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Studentship
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
- 批准号:
21K03287 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Translation terroirs – East Asian and European maps between Language, Ritual and Space
翻译风土 – 语言、仪式和空间之间的东亚和欧洲地图
- 批准号:
405038942 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Priority Programmes
Three-dimensional spatial probability maps and the examination of the association between the sulci and cytoarchitectonic divisions of the mid-dorsolateral prefrontal cortex in the human brain
三维空间概率图以及人脑中背外侧前额叶皮层脑沟和细胞结构分区之间关联的检查
- 批准号:
529184-2018 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Harmonic Maps Between Singular Spaces, Gauge Theory, and Applications
奇异空间、规范理论和应用之间的调和图
- 批准号:
1608764 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Chorography between Mimesis and Metric: Handdrawn Regional Maps from Westfalia (1450-1650)
模仿与公制之间的方位编法:威斯特伐利亚手绘区域地图(1450-1650)
- 批准号:
322324775 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Research Grants
Boundary regularity of biharmonic maps between Riemannian manifolds
黎曼流形间双调和映射的边界正则性
- 批准号:
283670898 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Research Grants
Proposal for Synchronization and Sharing Information between Tactile and Online Maps
关于触觉地图和在线地图之间同步和共享信息的提案
- 批准号:
25560101 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Harmonic maps between singular spaces, Gauge theory and applications
奇异空间之间的调和映射、规范理论及其应用
- 批准号:
1308708 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Partial groups and maps between p-completed classifying spaces
p-完备分类空间之间的部分群和映射
- 批准号:
EP/J014524/1 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Research Grant