Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
基本信息
- 批准号:2307384
- 负责人:
- 金额:$ 36.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project consists of three main research areas in applied mathematics: (i) properties of model operators in condensed matter and topological physics, (ii) performance of numerical algorithms for studying how waves propagate (either electromagnetic waves or fluid waves), and (iii) a study on how the geometry of a domain or graph impacts methods for “partitioning” it into smaller useful pieces for identifying key communities or labels (such as identifying cancer cells from certain genetic markers). Each of these might sound completely unrelated, but the main idea behind the project is that similar methods from harmonic analysis and optimization can be applied to each of these problems when viewed through the right lens. A substantial part of the project will be performed in collaboration with undergraduate and graduate students and postdocs, towards developing theoretical and computational tools, while at the same time maintaining and creating new collaborations with physicists, especially in terms of applications. Special attention will be paid to working with numerical analysts at the forefront of simulating problems in each application domain.Algorithms for solving complicated problems in physics, fluid mechanics and data analysis will be considered, with a special focus on quantifiable error estimates and rigorous constructions of various fundamental modes or resonances for physically important examples. For instance, the principal investigator will extend work that was performed with collaborators on solving the Helmholtz problem using domain decompositions to give further quantitative bounds on numerical schemes for obstacle scattering, in similar way to the cases of scattering by inhomogeneous media. This will give enhanced error estimates for numerical solutions to the Helmholtz equation, which play a major role in various applications for inverse problems in medical imaging, sonar detection, and more. In particular, although numerical simulations are by nature constrained to certain bounded domains, one can understand how to provide damping of a fluid at certain points to allow for a numerical simulation of the way a wave propagates in the open ocean without getting effects from the boundary. This is done by adding a “damping term” that could perturb the system in a significant way. However, upon performing a certain transformation, the essence of this damping lies in computing properties of operators that arise in quantum mechanics with complex potentials. The complex and rich tools that have been recently developed in microlocal analysis, optimization and elliptic theory of partial differential equations allow us to give strong insights and new means of establishing quantitative bounds. These apply to the efficacy of damped fluid models, as well as to questions related to the behavior of a light wave in a crystalline structure with defects. These methods apply to various fields, including but not limited to imaging, lasing and community detection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目包括应用数学的三个主要研究领域:(i)凝聚态和拓扑物理中的模型算符的性质,(ii)研究波如何传播(电磁波或流体波)的数值算法的性能,以及(iii)研究域或图的几何形状如何影响将其“划分”为更小的有用块以识别关键群落或标记(例如从某些遗传标记中识别癌细胞)的方法。这些听起来可能完全无关,但项目背后的主要思想是,谐波分析和优化的类似方法可以应用于通过正确的视角来看待这些问题。该项目的大部分工作将与本科生、研究生和博士后合作进行,以开发理论和计算工具,同时与物理学家保持和建立新的合作关系,特别是在应用方面。将特别注意与数值分析人员在模拟问题的最前沿在每个应用领域的工作。将考虑解决物理,流体力学和数据分析中的复杂问题的算法,特别关注可量化的误差估计和各种基本模式或共振的严格构造,以用于物理上重要的例子。例如,首席研究员将扩展与合作者一起完成的工作,使用域分解来解决亥姆霍兹问题,以类似于非均匀介质散射的方式,为障碍物散射的数值方案提供进一步的定量界限。这将为亥姆霍兹方程的数值解提供更大的误差估计,亥姆霍兹方程在医学成像、声纳检测等反问题的各种应用中发挥重要作用。特别是,虽然数值模拟本质上受限于某些有界域,但人们可以理解如何在某些点上提供流体的阻尼,以便在不受边界影响的情况下对波在开阔海洋中传播的方式进行数值模拟。这是通过添加一个“阻尼项”来实现的,这个“阻尼项”可能会以一种显著的方式干扰系统。然而,在进行某种变换后,这种阻尼的本质在于具有复势的量子力学中出现的算子的计算性质。近年来在偏微分方程的微局部分析、优化和椭圆理论中发展起来的复杂而丰富的工具,使我们对建立定量边界有了深刻的认识和新的手段。这些适用于阻尼流体模型的有效性,以及与具有缺陷的晶体结构中的光波行为有关的问题。这些方法适用于各个领域,包括但不限于成像、激光和社区检测。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Marzuola其他文献
Counting numerical sets with no small atoms
- DOI:
10.1016/j.jcta.2010.03.002 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Jeremy Marzuola;Andy Miller - 通讯作者:
Andy Miller
Jeremy Marzuola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Marzuola', 18)}}的其他基金
Algorithms and Analysis for Models in Materials Science, Fluids, and Probability
材料科学、流体和概率模型的算法和分析
- 批准号:
1909035 - 财政年份:2019
- 资助金额:
$ 36.67万 - 项目类别:
Continuing Grant
A Conference on Waves, Spectral Theory, and Applications
波、谱理论及应用会议
- 批准号:
1536072 - 财政年份:2015
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
CAREER: Nonlinear PDE Models in Mathematical Physics and Experiment
职业:数学物理和实验中的非线性偏微分方程模型
- 批准号:
1352353 - 财政年份:2014
- 资助金额:
$ 36.67万 - 项目类别:
Continuing Grant
Nonlinear Interactions and Dynamics in Problems From Fluids and Optics
流体和光学问题中的非线性相互作用和动力学
- 批准号:
1312874 - 财政年份:2013
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
- 批准号:
1207940 - 财政年份:2012
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Spectral theory for unitary operators and its applications to scattering theory
酉算子谱理论及其在散射理论中的应用
- 批准号:
20K14327 - 财政年份:2020
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
- 批准号:
RGPIN-2014-06123 - 财政年份:2018
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Grants Program - Individual
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
- 批准号:
RGPIN-2014-06123 - 财政年份:2017
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Grants Program - Individual
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
- 批准号:
RGPIN-2014-06123 - 财政年份:2016
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Grants Program - Individual
Conference: Canada - US summer school on spectral theory and applications; Quebec City, Canada; July 4-16, 2016
会议:加拿大-美国光谱理论与应用暑期学校;
- 批准号:
1603527 - 财政年份:2016
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
- 批准号:
RGPIN-2014-06123 - 财政年份:2015
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Grants Program - Individual
A Conference on Waves, Spectral Theory, and Applications
波、谱理论及应用会议
- 批准号:
1536072 - 财政年份:2015
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
- 批准号:
RGPIN-2014-06123 - 财政年份:2014
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Grants Program - Individual
Spectral Value Sets: Theory, Algorithms and Applications
谱值集:理论、算法和应用
- 批准号:
1317205 - 财政年份:2013
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Applications to computer vision using spectral theory
使用谱理论在计算机视觉中的应用
- 批准号:
25730116 - 财政年份:2013
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)