Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
基本信息
- 批准号:0406189
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTA basic problem in several complex variables is to understandthe interplay between the analytic and geometric natures of a domain.The principal investigator plans to address this problem by studying the d-bar-Neumann problem, invariant metrics, and automorphism groups. More specifically, the principal investigator plansto study compactness and eigenvalue spectrum of the d-bar-Neumann operator.He will investigate necessary and sufficient conditions for compactness of the d-bar-Neumann problem in geometric and potentialtheoretic terms. He will also study eigenvalue spectrum of thed-bar-Neumann problem by investigating, among other problems, the several complex variables analog of Mark Kac's question: ``Can one hear the shape of a drum?''. In addition, the principal investigatorplans to study invariant metrics, in particularly, the Bergman andKobayashi metrics. He will consider boundary behavior and the zero set ofthe Bergman kernel function, as well as completeness of the Kobayashimetric. Another problem to be studied is the theory of automorphismgroups and its relationship with the regularity of the d-bar-Neumannproblem. Complex analysis is a key tool in many areas of sciences and engineering.For example, the Laplace transform is essential in the study of mechanical vibrations and electric circuits. The Laplace equation has important applications to hydrodynamics, electrostatics, and heat conduction. The problems under investigation in this project are not only intrinsically interesting, but also have implications in areas such as complex geometry, operator theory, potential theory,mathematical physics, and quantum mechanics. Many tools to be used inthis project come from other branches of mathematics and sciences. Someproblems may even rely on computer programming. The investigator willalso contribute to the development of human resources by supervising agraduate student.
多复变中的一个基本问题是理解域的解析性质和几何性质之间的相互作用,主要研究者计划通过研究d-bar-Neumann问题、不变度量和自同构群来解决这个问题。更具体地说,主要研究者计划研究紧性和特征值谱的d-bar-Neumann算子,他将研究必要和充分条件的紧性的d-bar-Neumann问题的几何和potentialtheory术语。 他还将研究本征值谱的d-酒吧诺依曼问题的调查,除其他问题外,几个复杂的变量模拟马克卡茨的问题:``可以听到的形状鼓?''. 此外,主要作者计划研究不变度量,特别是Bergman和Kobayashi度量。他将考虑边界行为和零集的伯格曼核函数,以及完备性的小林度量。 另一个要研究的问题是自同构群理论及其与d-杆-Neumann问题的正则性的关系。复分析是许多科学和工程领域的重要工具,例如,拉普拉斯变换在机械振动和电路的研究中是必不可少的。 拉普拉斯方程在流体力学、静电学和热传导中有重要的应用。 在这个项目中调查的问题不仅是内在有趣的,但也有影响的领域,如复杂的几何,算子理论,潜在的理论,数学物理和量子力学。 在这个项目中使用的许多工具来自数学和科学的其他分支。 有些问题甚至可能依赖于计算机编程。调查员还将通过指导研究生为人力资源的开发做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siqi Fu其他文献
A Uniaxial Cell Stretcher In Vitro Model Simulating Tissue Expansion of Plastic Surgery
模拟整形外科组织扩张的单轴细胞担架体外模型
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Jincai Fan;Liqiang Liu;Hu Jiao;Cheng Gan;Jia Tian;Wenlin Chen;Zengjie Yang;Z. Yin - 通讯作者:
Z. Yin
Aesthetic Correction of Severe Cicatricial Upper-Eyelid Ectropion with a Retrograde Postauricular Island Flap
逆行耳后岛状皮瓣美学矫正严重疤痕性上眼睑外翻
- DOI:
10.1007/s00266-012-0009-9 - 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
Siqi Fu;Jincai Fan;Wenlin Chen;Zengjie Yang;Z. Yin - 通讯作者:
Z. Yin
Spectral Stability of the $\bar\partial-$Neumann Laplacian: Domain Perturbations.
$arpartial-$Neumann 拉普拉斯算子的光谱稳定性:域扰动。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Weixia Zhu - 通讯作者:
Weixia Zhu
Hearing the type of a domain in C^2 with the d-bar-Neumann Laplacian
使用 d-bar-Neumann Laplacian 判断 C^2 中域的类型
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu - 通讯作者:
Siqi Fu
Catalytic ozonation for imazapic degradation over kelp-derived biochar: Promotional role of N- and S-based active sites
海带生物炭上咪草烟降解的催化臭氧化:基于 N 和 S 的活性位点的促进作用
- DOI:
10.1016/j.scitotenv.2022.160473 - 发表时间:
- 期刊:
- 影响因子:9.8
- 作者:
Da Wang;Shiwen Dong;Siqi Fu;Yi Shen;Tao Zeng;Weiting Yu;Xiaohui Lu;Lizhang Wang;Shuang Song;Jun Ma - 通讯作者:
Jun Ma
Siqi Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siqi Fu', 18)}}的其他基金
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
2055538 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
1500952 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Spectral theory of Complex Laplacians and Applications
复拉普拉斯谱理论及其应用
- 批准号:
1101678 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Midwest Several Complex Variables Conference
中西部多个复杂变量会议
- 批准号:
1101665 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Analysis of Complex Laplacians
复杂拉普拉斯算子的几何分析
- 批准号:
0805852 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Differential Operators in Several Complex Variables
多个复变量中的微分算子
- 批准号:
0500909 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
- 批准号:
0070697 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




