Renormalization in piecewise isometric dynamical systems
分段等距动力系统中的重正化
基本信息
- 批准号:1500965
- 负责人:
- 金额:$ 17.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A collection of objects whose changes are governed by a time-independent update rule is called a dynamical system. Examples are pervasive in the sciences, including the motion of celestial bodies, weather patterns, the behavior of fluids moving through a pipe, and chemical processes. A basic question in the subject is to determine the behavior of such a system. So called hyperbolic dynamical systems are a prime example of success in the field. These systems admit a special kind of expansion and contraction, which make available certain mathematical methods of analyzing the behavior of these systems. This project centers on understanding systems at the opposite extreme, piecewise isometric systems, which admit no contraction or expansion and thus force different approaches to be used to understand these systems. These systems are typically understood through renormalization. Renormalization is a method of looking more and more closely at, or zooming in on, repeated behavior. Renormalization is a major part of this project and the PI will develop new renormalization methods and improve existing methods to understand these systems. A better understanding of these systems will have broad consequences for our understanding of dynamical systems as a subject. In addition to the research aims of the project, the PI will work with students, providing mentoring and training in mathematical research.The PI will make contributions toward the use of renormalization to understand dynamical phenomena in piecewise isometric dynamical systems and related systems. Systems of interest include horocyclic flows on hyperbolic surfaces, geodesic flows on flat manifolds, and piecewise isometric systems. Many of these systems arise naturally through connections with low-dimensional topology and geometry. A piecewise isometry is formed by cutting a metric space into pieces and applying an isometry to each piece so as to reassemble the whole space. Examples include interval exchange transformations (IETs), where the space is an interval, which is cut into finitely many subintervals. The theory of IETs is quite well developed and stands as a testament to the power of renormalization methods, but in contrast, many related systems are only poorly understood. A primary goal is to extend the applicability of renormalization methods to wider classes of systems including polygon exchange transformations, and infinite interval exchange transformations. New dynamical phenomena will be discovered and rigorously studied using the renormalization methods developed by the PI. Results produced by research in this proposal will widely disseminated through publication in research journals and through conference presentations.
其变化受与时间无关的更新规则控制的对象的集合称为动态系统。科学中的例子无处不在,包括天体的运动、天气模式、流体通过管道的行为以及化学过程。该主题的一个基本问题是确定此类系统的行为。所谓的双曲动力系统是该领域成功的一个典型例子。这些系统允许一种特殊的膨胀和收缩,这使得某些数学方法可以用来分析这些系统的行为。该项目的重点是理解相反极端的系统,即分段等距系统,该系统不允许收缩或膨胀,因此迫使使用不同的方法来理解这些系统。这些系统通常通过重整化来理解。 重整化是一种越来越仔细地观察或放大重复行为的方法。 重整化是该项目的主要部分,PI 将开发新的重整化方法并改进现有方法以理解这些系统。更好地理解这些系统将对我们对动力系统这一学科的理解产生广泛的影响。除了该项目的研究目标外,PI 还将与学生合作,提供数学研究方面的指导和培训。PI 将为使用重正化来理解分段等距动力系统和相关系统中的动力学现象做出贡献。感兴趣的系统包括双曲曲面上的环环流、平坦流形上的测地线流和分段等距系统。许多这样的系统是通过与低维拓扑和几何的联系自然产生的。分段等距是通过将度量空间切割成碎片并对每个碎片应用等距以重新组装整个空间来形成的。示例包括区间交换变换 (IET),其中空间是一个区间,该区间被划分为有限多个子区间。 IET 理论已经相当成熟,并且证明了重整化方法的力量,但相比之下,许多相关系统却知之甚少。主要目标是将重整化方法的适用性扩展到更广泛的系统类别,包括多边形交换变换和无限区间交换变换。使用 PI 开发的重整化方法将发现并严格研究新的动力学现象。本提案中的研究成果将通过研究期刊上的发表和会议演讲来广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Hooper其他文献
Bioequivalence Study of Two Multivitamin Formulations Containing Vitamin E and Folate in Healthy Adults
- DOI:
10.1093/cdn/nzab059_032 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Kelly Zhang;William Hooper;Andrew Wong;Malkanthi Evans;Najla Guthrie Guthrie;Annahita Ghassemi - 通讯作者:
Annahita Ghassemi
Vitamin B12 Absorption as Measured by Total B12 and Holo-TC Following A Single Oral Dose of Multivitamin in Healthy Adults
- DOI:
10.1093/cdn/nzab059_033 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Kelly Zhang;William Hooper;Laura Harkness;Annahita Ghassemi - 通讯作者:
Annahita Ghassemi
William Hooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Hooper', 18)}}的其他基金
Ergodic theory of infinite interval exchange transformations
无限区间交换变换的遍历理论
- 批准号:
1101233 - 财政年份:2011
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
相似海外基金
Piecewise adaptive linearity compensation for multi-axis nanopositioning stages
多轴纳米定位平台的分段自适应线性补偿
- 批准号:
10022720 - 财政年份:2022
- 资助金额:
$ 17.19万 - 项目类别:
Collaborative R&D
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2022
- 资助金额:
$ 17.19万 - 项目类别:
Discovery Grants Program - Individual
Piecewise expanding dynamical systems with neutral periodic points
具有中性周期点的分段展开动力系统
- 批准号:
574520-2022 - 财政年份:2022
- 资助金额:
$ 17.19万 - 项目类别:
University Undergraduate Student Research Awards
On the piecewise-smooth dynamics of robot-cancer interactions at microscale
微观尺度下机器人与癌症相互作用的分段平滑动力学
- 批准号:
2581433 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
Studentship
Models of gene regulation using piecewise deterministic Markov processes
使用分段确定性马尔可夫过程的基因调控模型
- 批准号:
563400-2021 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
University Undergraduate Student Research Awards
Optimality and Robustness in Piecewise-Deterministic Systems
分段确定性系统的最优性和鲁棒性
- 批准号:
2111522 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear system identification for large-scale and complicated systems using piecewise nonlinear models
使用分段非线性模型对大规模复杂系统进行非线性系统辨识
- 批准号:
21K12051 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2020
- 资助金额:
$ 17.19万 - 项目类别:
Discovery Grants Program - Individual
Optimization by Piecewise Linearization with Algorithmic Differentiation
通过算法微分的分段线性化优化
- 批准号:
19K11844 - 财政年份:2019
- 资助金额:
$ 17.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)