Optimality and Robustness in Piecewise-Deterministic Systems
分段确定性系统的最优性和鲁棒性
基本信息
- 批准号:2111522
- 负责人:
- 金额:$ 46.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on quantifying and actively managing uncertainties resulting from random switches in global environments. An abrupt ecological change, a new disruptive technology, a global economic downturn, or an emerging pandemic – any such game-changer event may transform the planning environment and shift the priorities of decision makers. Reactive planning is often the norm in practice, with the working assumption that global mode switches are too rare and unlikely to take them into account. But if a statistical characterization of such switches is available, using it in strategic planning can significantly improve the performance of the controlled system. Models with these features arise naturally in many research areas including economics, behavioral ecology, public policy, robotic navigation, evolutionary biology, and security applications (e.g., preventing illegal logging or wildlife poaching). PI will develop efficient numerical methods for controlling such systems, focusing on trade-offs between the average-case optimality and robustness (interpreted as minimizing the probability of undesirable outcomes.) This project will support 2 graduate students in each of the first two years and 1 graduate student in the third year. Piecewise-Deterministic Markov Processes (PDMPs) provide an excellent framework for modeling large-scale stochastic perturbations of the global environment. The aleatoric uncertainty due to such perturbations is an important feature of realistic control problems, but until recently it has attracted far less attention in mathematical literature than the diffusive perturbations studied in ``classical'' stochastic optimal control theory. Practitioners often want to model these environment-switch uncertainties as well as time-structured information accumulation patterns present in their applications. Moreover, it may not be enough for them to optimize the expected value of the outcome. They often need to maximize the probability of good outcomes while imposing constraints on the worst-case scenario. To accomplish this, we need to modify the partial differential equations (PDEs) encoding the optimal behavior, and this presents a range of new computational challenges: free boundaries, discontinuities, higher dimensionality of the state space, and larger systems of coupled nonlinear PDEs. We propose to study the trade-offs involved in using such modified models and to develop numerical methods to solve them efficiently. In the PDMP setting, even the traditional risk-neutral approach of optimizing the expected performance can be computationally costly since it involves solving a coupled system of Hamilton-Jacobi-Bellman (HJB) equations. We develop several approaches for decreasing this computational cost by constructing new discretization schemes and leveraging efficient methods previously developed for fully deterministic problems. We also extend our recent approach for optimizing the Cumulative Distribution Function (CDF) of the total cost incurred by a stochastic switching system. This is accomplished by solving a different system of HJB equations on an expanded state space, with ``threshold-optimal'' controls recovered for all starting configurations and all threshold values simultaneously. We further investigate the trade-offs between conflicting optimization criteria and several notions of robustness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是量化和积极管理全球环境中随机变化造成的不确定性。 突然的生态变化、新的颠覆性技术、全球经济衰退或新出现的流行病-任何此类改变游戏规则的事件都可能改变规划环境并改变决策者的优先事项。 反应式规划通常是实践中的规范,其工作假设是全局模式切换太罕见,不太可能考虑它们。 但是,如果这种开关的统计特性是可用的,在战略规划中使用它可以显着提高受控系统的性能。 具有这些特征的模型自然出现在许多研究领域,包括经济学、行为生态学、公共政策、机器人导航、进化生物学和安全应用(例如,防止非法砍伐或偷猎野生动物)。PI将开发用于控制此类系统的有效数值方法,重点是平均情况下的最优性和鲁棒性之间的权衡(解释为最小化不良结果的概率)。该项目将在前两年每年支持2名研究生,第三年支持1名研究生。分段确定性马尔可夫过程(PDMP)为全球环境的大规模随机扰动建模提供了一个很好的框架。 任意的不确定性,由于这种扰动是现实控制问题的一个重要特征,但直到最近,它已经吸引了远远低于数学文献中的注意力比扩散扰动研究的“经典”随机最优控制理论。 从业者经常希望对这些环境切换的不确定性以及应用程序中存在的时间结构信息积累模式进行建模。 此外,这可能不足以让他们优化结果的预期价值。 他们往往需要最大限度地提高好结果的可能性,同时对最坏的情况施加限制。 为了实现这一点,我们需要修改编码最优行为的偏微分方程(PDE),这带来了一系列新的计算挑战:自由边界,不连续性,状态空间的高维性,以及耦合非线性PDE的更大系统。 我们建议研究使用这种修改后的模型所涉及的权衡,并开发数值方法来有效地解决这些问题。 在Pestrian设置中,即使是优化预期性能的传统风险中性方法也可能在计算上代价高昂,因为它涉及求解Hamilton-Jacobi-Bellman(HJB)方程的耦合系统。 我们开发了几种方法,通过构建新的离散化方案和利用以前开发的完全确定性问题的有效方法来降低计算成本。 我们还扩展了我们最近的方法,优化的累积分布函数(CDF)的随机切换系统所产生的总成本。这是通过在扩展的状态空间上求解不同的HJB方程组来实现的,同时对所有起始配置和所有阈值恢复“阈值最优”控制。 我们进一步研究了相互冲突的优化标准和几个鲁棒性概念之间的权衡。该奖项反映了NSF的法定使命,并被认为是值得支持的,通过使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Path-Planning With Random Breakdowns
随机故障的最优路径规划
- DOI:10.1109/lcsys.2021.3130193
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Gee, Marissa;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Surveillance Evasion Through Bayesian Reinforcement Learning
通过贝叶斯强化学习规避监视
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Qi, Dongping;Bindel, David;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Stochastic Optimal Control of a Sailboat
帆船的随机最优控制
- DOI:10.1109/lcsys.2021.3136438
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Miles, Cole;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Quantifying and Managing Uncertainty in Piecewise-Deterministic Markov Processes
- DOI:10.1137/20m1357275
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:E. Cartee;Antonio Farah;April Nellis;Jacob Van Hook;A. Vladimirsky
- 通讯作者:E. Cartee;Antonio Farah;April Nellis;Jacob Van Hook;A. Vladimirsky
Optimal Driving Under Traffic Signal Uncertainty
交通信号不确定性下的最佳驾驶
- DOI:10.1016/j.ifacol.2022.08.076
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gaspard, Mallory E.;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Vladimirsky其他文献
Monotone Causality in Opportunistically Stochastic Shortest Path Problems
机会随机最短路径问题中的单调因果关系
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mallory E. Gaspard;Alexander Vladimirsky - 通讯作者:
Alexander Vladimirsky
Alexander Vladimirsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Vladimirsky', 18)}}的其他基金
ATD: Surveillance Evasion and Threat Avoidance
ATD:监视规避和威胁规避
- 批准号:
1738010 - 财政年份:2017
- 资助金额:
$ 46.68万 - 项目类别:
Continuing Grant
Causality as a source of efficiency in numerical methods.
因果关系是数值方法效率的来源。
- 批准号:
1016150 - 财政年份:2011
- 资助金额:
$ 46.68万 - 项目类别:
Continuing Grant
Non-iterative Numerical Methods for Boundary Value Problems
边值问题的非迭代数值方法
- 批准号:
0514487 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
Continuing Grant
Fast Methods for Static Hamilton-Jacobi Partial Differential Equations
静态 Hamilton-Jacobi 偏微分方程的快速方法
- 批准号:
0102072 - 财政年份:2001
- 资助金额:
$ 46.68万 - 项目类别:
Fellowship Award
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
- 批准号:
EP/X04162X/1 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
- 批准号:
2325755 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
- 批准号:
DP240103385 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
- 批准号:
DP240101301 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335412 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant